ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
PLoS Pathog.
2018 Jul 12
Marshall VA, Labo N, Hao XP, Holdridge B, Thompson M, Miley W, Brands C, Coalter V, Kiser R, Anver M, Golubeva Y, Warner A, Jaffe ES, Piatak M Jr, Wong SW, Ohlen C, MacAllister R, Smedley J, Deleage C, Del Prete GQ, Lifson JD, Estes JD, Whitby D.
PMID: 30001436 | DOI: 10.1371/journal.ppat.1007130
Human gammaherpesviruses are associated with malignancies in HIV infected individuals; in macaques used in non-human primate models of HIV infection, gammaherpesvirus infections also occur. Limited data on prevalence and tumorigenicity of macaque gammaherpesviruses, mostly cross-sectional analyses of small series, are available. We comprehensively examine all three-rhesus macaque gammaherpesviruses -Rhesus rhadinovirus (RRV), Rhesus Lymphocryptovirus (RLCV) and Retroperitoneal Fibromatosis Herpesvirus (RFHV) in macaques experimentally infected with Simian Immunodeficiency Virus or Simian Human Immunodeficiency Virus (SIV/SHIV) in studies spanning 15 years at the AIDS and Cancer Virus Program of the Frederick National Laboratory for Cancer Research. We evaluated 18 animals with malignancies (16 lymphomas, one fibrosarcoma and one carcinoma) and 32 controls. We developed real time quantitative PCR assays for each gammaherpesvirus DNA viral load (VL) in malignant and non-tumor tissues; we also characterized the tumors using immunohistochemistry and in situ hybridization. Furthermore, we retrospectively quantified gammaherpesvirus DNA VL and SIV/SHIV RNA VL in longitudinally-collected PBMCs and plasma, respectively. One or more gammaherpesviruses were detected in 17 tumors; generally, one was predominant, and the relevant DNA VL in the tumor was very high compared to surrounding tissues. RLCV was predominant in tumors resembling diffuse large B cell lymphomas; in a Burkitt-like lymphoma, RRV was predominant; and in the fibrosarcoma, RFHV was predominant. Median RRV and RLCV PBMC DNA VL were significantly higher in cases than controls; SIV/SHIV VL and RLCV VL were independently associated with cancer. Local regressions showed that longitudinal VL patterns in cases and controls, from SIV infection to necropsy, differed for each gammaherpesvirus: while RFHV VL increased only slightly in all animals, RLCV and RRV VL increased significantly and continued to increase steeply in cases; in controls, VL flattened. In conclusion, the data suggest that gammaherpesviruses may play a significant role in tumorogenesis in macaques infected with immunodeficiency viruses.
Vet Pathol.
2018 Sep 16
Pesavento PA, Cunha CW, Li H, Jackson K, O'Toole D.
PMID: 30222071 | DOI: 10.1177/0300985818798085
A constraint on understanding the pathogenesis of malignant catarrhal fever (MCF) is the limited number of tools to localize infected cells. The amount of detectable virus, visualized in the past either by immunohistochemistry or in situ hybridization (ISH), has been modest in fixed or frozen tissues. This complicates our understanding of the widespread lymphoid proliferation, epithelial necrosis/apoptosis, and arteritis-phlebitis that characterize MCF. In this work, we developed a probe-based in situ hybridization assay targeting 2 ovine herpesvirus 2 (OvHV-2) genes, as well as their respective transcripts, in formalin-fixed tissues. Using this approach, OvHV-2 nucleic acids were detected in lymphocytes in MCF-affected animals following both natural infection (American bison and domestic cattle) and experimental infection (American bison, rabbits, and pigs). The probe did not cross-react with 4 closely related gammaherpesviruses that also cause MCF: alcelaphine herpesvirus 1, alcelaphine herpesvirus 2, caprine herpesvirus 2, and ibex-MCF virus (MCFV). No signal was detected in control tissues negative for OvHV-2. ISH will be of value in analyzing the natural progression of OvHV-2 infection in time-course studies following experimental infection and in addressing the pathogenesis of MCF.
J Infect Dis.
2019 May 07
Caine EA, Scheaffer SM, Broughton DE, Salazar V, Govero J, Poddar S, Osula A, Halabi J, Skaznik-Wikiel ME, Diamond MS, Moley KH.
PMID: 31063544 | DOI: 10.1093/infdis/jiz239
Zika virus (ZIKV) has become a global concern because infection of pregnant mothers was linked to congenital birth defects. ZIKV is unique from other flaviviruses, as it is transmitted vertically and sexually in addition to by mosquito vectors. Prior studies in mice, non-human primates, and humans have shown that ZIKV targets the testis in males, resulting in persistent infection and oligospermia. However, its effects on the corresponding female gonads have not been evaluated. Here, we assessed the effects of ZIKV on the ovary in non-pregnant mice. During the acute phase, ZIKV productively infected the ovary causing accumulation of CD4+ and virus-specific CD8+ T cells. T cells protected against ZIKV infection in the ovary, as higher viral burden was measured in CD8-/- and TCRβδ-/- mice. Increased cell death and tissue inflammation in the ovary was observed during the acute phase of infection, but this normalized over time. In contrast to that observed with males, minimal persistence and no long-term consequences of ZIKV infection on ovarian follicular reserve or fertility were demonstrated in this model. Thus, although ZIKV replicates in cells of the ovary and causes acute oophoritis, there is rapid resolution and no long-term effects on fertility, at least in mice.
Virol J.
2016 Nov 11
Phan TG, Giannitti F, Rossow S, Marthaler D, Knutson T, Li L, Deng X, Resende T, Vannucci F, Delwart E.
PMID: 27835942 | DOI: 10.1186/s12985-016-0642-z
Head Neck.
2018 Mar 09
Yu F, Lu Y, Petersson F, Wang DY, Loh KS.
PMID: 29522272 | DOI: 10.1002/hed.25131
Abstract
BACKGROUND:
Chromogenic Epstein-Barr virus-encoded RNA (EBER) in situ hybridization (EBER-ISH) is the gold standard to detect Epstein-Barr virus (EBV) but it is difficult to use in conjunction with immunohistochemistry (IHC). In this study, our purpose was to validate the sensitivity and specificity of RNAscope in detection of EBV infection in nasal epithelium and its stroma.
METHODS:
Fluorescence-based RNAscope EBER-ISH, BRLF1-ISH, and lineage marker-IHC were performed on archived formalin-fixed paraffin-embedded tissues from normal nasal cavity (n = 5), nasopharynx (n = 8), and nasopharyngeal carcinoma (NPC) specimens (n = 10).
RESULTS:
The EBERs were detected in 10 of 10 NPC samples but was absent in all normal tissues from the nasal cavity and nasopharynx. The EBERs were exclusively located in pan-cytokeratin (pan-CK)-positive tumor epithelial cells but not in CD45-positive leukocytes and vimentin-positive stromal fibroblasts. The level of EBER expression varied in tumor cells within patient and between patients as well. Additionally, 5 of 10 patients had positive BRLF-ISH.
CONCLUSION:
We developed a simple and reproducible method to simultaneously detect mRNA and protein in formalin-fixed paraffin-embedded tissues of NPC. As a single staining, traditional EBER continues to be useful; however, for interpretation of the phenotype of EBV-infected cells, RNAscope is superior. Significantly, we showed that lytic EBV infection took place in NPC tumors.
J Int J Clin Exp Pathol (2018)
2018 Nov 15
Cui L, Qu C, Liu H.
| DOI: ISSN:1936-2625/IJCEP0085220
Journal of veterinary internal medicine
2023 May 08
Viitanen, SJ;Tuomisto, L;Salonen, N;Eskola, K;Kegler, K;
PMID: 37154220 | DOI: 10.1111/jvim.16719
PLoS One, 8(11), e79259.
Bodewes R, Rubio García A, Wiersma LC, Getu S, Beukers M, Schapendonk CM, van Run PR, van de Bildt MW, Poen MJ, Osinga N, Sánchez Contreras GJ, Kuiken T, Smits SL, Osterhaus AD (2013).
PMID: 24223918 | DOI: 10.1371/journal.pone.0079259.
Arch Pathol Lab Med. 2014 Sep;138(9):1193-202.
Patel KR, Liu TC, Vaccharajani N, Chapman WC, Brunt EM.
PMID: 25171414 | DOI: 10.1016/j.cell.2014.07.001
Vet Pathol. 2015 Jul 27.
Gaynor AM, Zhu KW, Cruz FN Jr, Affolter VK, Pesavento PA.
PMID: 26215759 | DOI: 0300985815594852
Head Neck Pathol.
2017 Feb 08
Rooper LM, Bishop JA, Westra WH.
PMID: 28181187 | DOI: 10.1007/s12105-017-0779-0
The role of human papillomavirus (HPV) as an etiologic and transformational agent in inverted Schneiderian papilloma (ISP) is unclear. Indeed, reported detection rates of HPV in ISPs range from 0 to 100%. The true incidence has been confounded by a tendency to conflate high- and low-risk HPV types and by the inability to discern biologically relevant from irrelevant HPV infections. The recent development of RNA in situ hybridization for high-risk HPV E6/E7 mRNA now allows the direct visualization of transcriptionally active high-risk HPV in ISP, providing an opportunity to more definitively assess its role in the development and progression of ISPs. We performed p16 immunohistochemistry and high-risk HPV RNA in situ hybridization on 30 benign ISPs, 7 ISPs with dysplasia, 16 ISPs with carcinomatous transformation, and 7 non-keratinizing squamous cell carcinomas (SCCs) with inverted growth that were unassociated with ISP. Transcriptionally active HPV was not detected in any of the 52 ISPs including those that had undergone carcinomatous transformation, but it was detected in two of seven (29%) non-keratinizing SCCs that showed inverted growth. There was a strong correlation between high-risk HPV RNA in situ hybridization and p16 immunohistochemistry (97%; p < 0.01). These results indicate that transcriptionally active high-risk HPV does not play a common role in either the development of ISP or in its transformation into carcinoma.
Am J Pathol
2017 Dec 08
Mangus LM, Beck SE, Queen SE, Brill SA, Shirk EN, Metcalf Pate KA, Muth DC, Adams RJ, Gama L, Clements JE, Mankowski JL.
PMID: - | DOI: 10.1016/j.ajpath.2017.08.035
A retrospective neuropathologic review of 30 SIV-infected pigtailed macaques receiving combination antiretroviral therapy (cART) was conducted. Seventeen animals with lymphocyte-dominant inflammation in the brain and/or meninges that clearly was morphologically distinct from prototypic SIV encephalitis and human immunodeficiency virus encephalitis were identified. Central nervous system (CNS) infiltrates in cART-treated macaques primarily comprised CD20+ B cells and CD3+ T cells with fewer CD68+ macrophages. Inflammation was associated with low levels of SIV RNA in the brain as shown by in situ hybridization, and generally was observed in animals with episodes of cerebrospinal fluid (CSF) viral rebound or sustained plasma and CSF viremia during treatment. Although the lymphocytic CNS inflammation in these macaques shared morphologic characteristics with uncommon immune-mediated neurologic disorders reported in treated HIV patients, including CNS immune reconstitution inflammatory syndrome and neurosymptomatic CSF escape, the high prevalence of CNS lesions in macaques suggests that persistent adaptive immune responses in the CNS also may develop in neuroasymptomatic or mildly impaired HIV patients yet remain unrecognized given the lack of access to CNS tissue for histopathologic evaluation. Continued investigation into the mechanisms and outcomes of CNS inflammation in cART-treated, SIV-infected macaques will advance our understanding of the consequences of residual CNS HIV replication in patients on cART, including the possible contribution of adaptive immune responses to HIV-associated neurocognitive disorders.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com