ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Proc Natl Acad Sci U S A.
2015 Dec 08
Drexler JF, Corman VM, Lukashev AN, van den Brand JM, Gmyl AP, Brünink S, Rasche A, Seggewiβ N, Feng H, Leijten LM, Vallo P, Kuiken T, Dotzauer A, Ulrich RG, Lemon SM, Drosten C; Hepatovirus Ecology Consortium.
PMID: 26575627 | DOI: 10.1073/pnas.1516992112.
Hepatitis A virus (HAV) is an ancient and ubiquitous human pathogen recovered previously only from primates. The sole species of the genus Hepatovirus, existing in both enveloped and nonenveloped forms, and with a capsid structure intermediate between that of insect viruses and mammalian picornaviruses, HAV is enigmatic in its origins. We conducted a targeted search for hepatoviruses in 15,987 specimens collected from 209 small mammal species globally and discovered highly diversified viruses in bats, rodents, hedgehogs, and shrews, which by pairwise sequence distance comprise 13 novel Hepatovirus species. Near-complete genomes from nine of these species show conservation of unique hepatovirus features, including predicted internal ribosome entry site structure, a truncated VP4 capsid protein lacking N-terminal myristoylation, a carboxyl-terminal pX extension of VP1, VP2 late domains involved in membrane envelopment, and a cis-acting replication element within the 3D(pol) sequence. Antibodies in some bat sera immunoprecipitated and neutralized human HAV, suggesting conservation of critical antigenic determinants. Limited phylogenetic cosegregation among hepatoviruses and their hosts and recombination patterns are indicative of major hepatovirus host shifts in the past. Ancestral state reconstructions suggest a Hepatovirus origin in small insectivorous mammals and a rodent origin of human HAV. Patterns of infection in small mammals mimicked those of human HAV in hepatotropism, fecal shedding, acute nature, and extinction of the virus in a closed host population. The evolutionary conservation of hepatovirus structure and pathogenesis provide novel insight into the origins of HAV and highlight the utility of analyzing animal reservoirs for risk assessment of emerging viruses.
Pathology - Research and Practice
2016 Sep 22
Wanga D, Fu L, Shah W, Zhang J, Yan Y, Ge X, He J, Wang Y, Xu Li.
PMID: - | DOI: dx.doi.org/10.1016/j.prp.2016.09.009
Background and aims
The causative role of high risk human papillomavirus (HR-HPV) in breast cancer development is controversial, though a number of reports have identified HR-HPV DNA in breast cancer specimens. Nevertheless, most studies to date have focused primarily on viral DNA rather than the viral transcription. The aim of this study was to investigate the presence of HR-HPV in breast cancer tissues at HPV DNA level and HPV oncogenes mRNA level by in situ hybridization (ISH).
Methods
One hundred and forty six (146) cases of breast invasive ductal carcinoma(IDC) and 83 cases of benign breast lesions were included in the study. Type specific oligonucleotide probes were used for the DNA detection of HPV 16,18 and 58 by ISH. HR-HPV oncogenes mRNA was assayed by novel RNAscope HR-HPV HR7 assay ISH. p16 protein expression was evaluated by immunohistochemistry (IHC).
Results
HR-HPV 16,18 and 58 DNA were detected in 52 out of 146 (35.6%) IDC and in 3 out of 83 (3.6%) benign breast lesions by ISH. The HR-HPV mRNAs was detected only in a few specimens with strong HPV DNA positivity(4/25) in a few scattered cancer cells with very weak punctate nuclear and/or cytoplasmic staining. p16 over-expression did not correlate with the HPV DNA positive breast cancer samples(17/52 HPVDNA+ vs 28/94 HPV DNA-, p = 0.731).
Conclusions
HR-HPVs certainly exist in breast cancer tissue with less active transcription, which implies that the causal role of HPV in breast cancer development need further study.
PLoS Pathog.
2017 Feb 27
Maidji E, Somsouk M, Rivera JM, Hunt PW, Stoddart CA.
PMID: 28241080 | DOI: 10.1371/journal.ppat.1006202
Although invasive cytomegalovirus (CMV) disease is uncommon in the era of antiretroviral therapy (ART), asymptomatic CMV coinfection is nearly ubiquitous in HIV infected individuals. While microbial translocation and gut epithelial barrier dysfunction may promote persistent immune activation in treated HIV infection, potentially contributing to morbidity and mortality, it has been unclear whether CMV replication in individuals with no symptoms of CMV disease might play a role in this process. We hypothesized that persistent CMV replication in the intestinal epithelium of HIV/CMV-coinfected individuals impairs gut epithelial barrier function. Using a combination of state-of-the-art in situ hybridization technology (RNAscope) and immunohistochemistry, we detected CMV DNA and proteins and evidence of intestinal damage in rectosigmoid samples from CMV-positive individuals with both untreated and ART-suppressed HIV infection. Two different model systems, primary human intestinal cells differentiated in vitro to form polarized monolayers and a humanized mouse model of human gut, together demonstrated that intestinal epithelial cells are fully permissive to CMV replication. Independent of HIV, CMV disrupted tight junctions of polarized intestinal cells, significantly reducing transepithelial electrical resistance, a measure of monolayer integrity, and enhancing transepithelial permeability. The effect of CMV infection on the intestinal epithelium is mediated, at least in part, by the CMV-induced proinflammatory cytokine IL-6. Furthermore, letermovir, a novel anti-CMV drug, dampened the effects of CMV on the epithelium. Together, our data strongly suggest that CMV can disrupt epithelial junctions, leading to bacterial translocation and chronic inflammation in the gut and that CMV could serve as a target for therapeutic intervention to prevent or treat gut epithelial barrier dysfunction during HIV infection.
J Immunol
2017 Apr 24
Vinton CL, Ortiz AM, Calantone N, Mudd JC, Deleage C, Morcock DR, Whitted S, Estes JD, Hirsch VM, Brenchley JM.
PMID: 28438898 | DOI: 10.4049/jimmunol.1700136
African green monkeys (AGMs) are a natural host of SIV that do not develop simian AIDS. Adult AGMs naturally have low numbers of CD4+T cells and a large population of MHC class II-restricted CD8αα T cells that are generated through CD4 downregulation in CD4+ T cells. In this article, we study the functional profiles and SIV infection status in vivo of CD4+ T cells, CD8αα T cells, and CD8αβ T cells in lymph nodes, peripheral blood, and bronchoalveolar lavage fluid of AGMs and rhesus macaques (in which CD4 downregulation is not observed). We show that, although CD8αα T cells in AGMs maintain functions associated with CD4+ T cells (including Th follicular functionality in lymphoid tissues and Th2 responses in bronchoalveolar lavage fluid), they also accumulate functions normally attributed to canonical CD8+ T cells. These hyperfunctional CD8αα T cells are found to circulate peripherally, as well as reside within the lymphoid tissue. Due to their unique combination of CD4 and CD8 T cell effector functions, these CD4- CD8αα T cells are likely able to serve as an immunophenotype capable of Th1, follicular Th, and CTL functionalities, yet they are unable to be infected by SIV. These data demonstrate the ambiguity of CD4/CD8 expression in dictating the functional capacities of T cells and suggest that accumulation of hyperfunctional CD8αα T cells in AGMs may lead to tissue-specific antiviral immune responses in lymphoid follicles that limit SIV replication in this particular anatomical niche.
PLoS Pathog.
2017 May 19
Introini A, Boström S, Bradley F, Gibbs A, Glaessgen A, Tjernlund A, Broliden K.
PMID: 28542587 | DOI: 10.1371/journal.ppat.1006402
The most immediate and evident effect of mucosal exposure to semen in vivo is a local release of proinflammatory mediators accompanied by an influx of leukocytes into the female genital mucosa (FGM). The implication of such response in HIV-1 transmission has never been addressed due to limitations of currently available experimental models. Using human tissue explants from the uterine cervix, we developed a system of mucosal exposure to seminal plasma (SP) that supports HIV-1 replication. Treatment of ectocervical explants with SP resulted in the upregulation of inflammatory and growth factors, including IL-6, TNF, CCL5, CCL20, CXCL1, and CXCL8, and IL1A, CSF2, IL7, PTGS2, as evaluated by measuring protein levels in explant conditioned medium (ECM) and gene expression in tissue. SP treatment was also associated with increased recruitment of monocytes and neutrophils, as observed upon incubation of peripheral blood leukocytes with ECM in a transwell system. To evaluate the impact of the SP-mediated response on local susceptibility to HIV-1, we infected ectocervical explants with the CCR5-tropic variant HIV-1BaL either in the presence of SP, or after explant pre-incubation with SP. In both experimental settings SP enhanced virus replication as evaluated by HIV-1 p24gag released in explant culture medium over time, as well as by HIV-1 DNA quantification in explants infected in the presence of SP. These results suggest that a sustained inflammatory response elicited by SP soon after coitus may promote HIV-1 transmission to the FGM. Nevertheless, ectocervical tissue explants did not support the replication of transmitted/founder HIV-1 molecular clones, regardless of SP treatment. Our system offers experimental and analytical advantages over traditional models of HIV-1 transmission for the study of SP immunoregulatory effect on the FGM, and may provide a useful platform to ultimately identify new determinants of HIV-1 infection at this site.
Mol Imaging Biol.
2017 Sep 12
Kuszpit K, Hollidge BS, Zeng X, Stafford RG, Daye S, Zhang X, Basuli F, Golden JW, Swenson RE, Smith DR, Bocan TM.
PMID: 28900831 | DOI: 10.1007/s11307-017-1118-2
Abstract
PURPOSE:
The association of Zika virus (ZIKV) infection and development of neurological sequelae require a better understanding of the pathogenic mechanisms causing severe disease. The purpose of this study was to evaluate the ability and sensitivity of positron emission tomography (PET) imaging using [18F]DPA-714, a translocator protein (TSPO) 18 kDa radioligand, to detect and quantify neuroinflammation in ZIKV-infected mice.
PROCEDURES:
We assessed ZIKV-induced pathogenesis in wild-type C57BL/6 mice administered an antibody to inhibit type I interferon (IFN) signaling. [18F]DPA-714 PET imaging was performed on days 3, 6, and 10 post-infection (PI), and tissues were subsequently processed for histological evaluation, quantification of microgliosis, and detection of viral RNA by in situ hybridization (ISH).
RESULTS:
In susceptible ZIKV-infected mice, viral titers in the brain increased from days 3 to 10 PI. Over this span, these mice showed a two- to sixfold increase in global brain neuroinflammation using [18F]DPA-714 PET imaging despite limited, regional detection of viral RNA. No measurable increase in ionized calcium binding adaptor molecule 1 (Iba-1) expression was noted at day 3 PI; however, there was a modest increase at day 6 PI and an approximately significant fourfold increase in Iba-1 expression at day 10 PI in the susceptible ZIKV-infected group relative to controls.
CONCLUSIONS:
The results of the current study demonstrate that global neuroinflammation plays a significant role in the progression of ZIKV infection and that [18F]DPA-714 PET imaging is a sensitive tool relative to histology for the detection of neuroinflammation. [18F]DPA-714 PET imaging may be useful in dynamically characterizing the pathology associated with neurotropic viruses and the evaluation of therapeutics being developed for treatment of infectious diseases.
Sci Transl Med.
2018 Jan 31
Platt DJ, Smith AM, Arora N, Diamond MS, Coyne CB, Miner JJ.
PMID: 29386359 | DOI: 10.1126/scitranslmed.aao7090
Although Zika virus (ZIKV) infection in pregnant women can cause placental damage, intrauterine growth restriction, microcephaly, and fetal demise, these disease manifestations only became apparent in the context of a large epidemic in the Americas. We hypothesized that ZIKV is not unique among arboviruses in its ability to cause congenital infection. To evaluate this, we tested the capacity of four emerging arboviruses [West Nile virus (WNV), Powassan virus (POWV), chikungunya virus (CHIKV), and Mayaro virus (MAYV)] from related (flavivirus) and unrelated (alphavirus) genera to infect the placenta and fetus in immunocompetent, wild-type mice. Although all four viruses caused placental infection, only infection with the neurotropic flaviviruses (WNV and POWV) resulted in fetal demise. WNV and POWV also replicated efficiently in second-trimester human maternal (decidua) and fetal (chorionic villi and fetal membrane) explants, whereas CHIKV and MAYV replicated less efficiently. In mice, RNA in situ hybridization and histopathological analysis revealed that WNV infected the placenta and fetal central nervous system, causing injury to the developing brain. In comparison, CHIKV and MAYV did not cause substantive placental or fetal damage despite evidence of vertical transmission. On the basis of the susceptibility of human maternal and fetal tissue explants and pathogenesis experiments in immunocompetent mice, other emerging neurotropic flaviviruses may share with ZIKV the capacity for transplacental transmission, as well as subsequent infection and injury to the developing fetus.
Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc
2022 May 01
Sturos, MJ;Murray, D;Johnson, L;Preis, G;Corzo, CA;Rossow, S;Vannucci, FA;
PMID: 35354385 | DOI: 10.1177/10406387221084054
Journal of virology, 87(8),
Safronetz D, Prescott J, Haddock E, Scott DP, Feldmann H, Ebihara H. (2013).
PMID: 23388711 | DOI: 10.1128/JVI.03291-12.
Oral Oncol. Apr; 50(4):306–310.
Poling JS, Ma XJ, Bui S, Luo Y, Li R, Koch WM, Westra WH (2014).
PMID: 24485566 | DOI: 10.1016/j.oraloncology.2014.01.006.
J Hepatol.
2016 Jan 21
Allweiss L, Gass S, Giersch K, Groth A, Kah J, Volz T, Rapp G, Schöbel A, Lohse AW, Polywka S, Pischke S, Herker E, Dandri M, Lütgehetmann M.
PMID: 26805671 | DOI: 10.1016/j.jhep.2016.01.011
Abstract
BACKGROUND & AIMS:
Hepatitis E virus (HEV) is a major cause of acute hepatitis as well as chronic infection in immunocompromised individuals; however, in vivo infection models are limited. The aim of this study was to establish a small animal model to improve our understanding of HEV replication mechanisms and permit the development of effective therapeutics.
METHODS:
UPA/SCID/beige mice repopulated with primary human hepatocytes were used for infection experiments with HEV genotype (GT) 1 and 3. Virological parameters were determined at the serological and intrahepatic level by real time PCR, immunohistochemistry and RNA in situ hybridization.
RESULTS:
Establishment of HEV infection was achieved after intravenous injection of stool-derived virions and following co-housing with HEV-infected animals but not via inoculation of serum-derived HEV. GT 1 infection resulted in a rapid rise of viremia and high stable titres in serum, liver, bile and faeces of infected mice for more than 25 weeks. In contrast, viremia in GT 3 infected mice developed more slowly and displayed lower titres in all analysed tissues as compared to GT 1. HEV-infected human hepatocytes could be visualized using HEV ORF2 and ORF3 specific antibodies and HEV RNA in situ hybridization probes. Finally, six-week administration of ribavirin led to a strong reduction of viral replication in the serum and liver of GT 1 infected mice.
CONCLUSION:
We established an efficient model of HEV infection to test the efficacy of antiviral agents and to exploit mechanisms of HEV replication and interaction with human hepatocytes in vivo.
Cancer Microenviron.
2017 Oct 24
Swangphon P, Pientong C, Sunthamala N, Bumrungthai S, Azuma M, Kleebkaow P, Tangsiriwatthana T, Sangkomkamhang U, Kongyingyoes B, Ekalaksananan T.
PMID: 29064053 | DOI: 10.1007/s12307-017-0200-2
HPV infected cervical cells secrete mediators that are gradually changed and have influence on infiltrating M2 phenotypic monocytes in cervical lesions. However, profiles of circulating immune cells in women with cervical lesions and M2 phenotypic monocyte activity in HPV infected cervical lesions are limited. This study aimed to investigate circulating monocyte populations correlated with M2 phenotype density and its activity in HPV infected cervical lesions. HPV DNA was investigated in cervical tissues using PCR. High risk HPV E6/E7 mRNA was detected using in situ hybridization. CD163 immunohistochemical staining was performed for M2 macrophage. CD163 and Arg1 mRNA expression were detected using real-time PCR. Circulating monocyte subpopulations were analyzed using flow cytometry. CD163 and Arg1 mRNA expression were increased according to cervical lesion severity and corresponding with density of M2 macrophage in HSIL and SCC in stroma and peri-tumoral areas. Additionally, the relationship between M2 macrophage infiltration and high risk HPV E6/E7 mRNA expression was found and corresponded with cervical lesion severity. Circulating CD14+CD16+ and CD14+CD163+ monocytes were elevated in No-SIL and cervical lesions. Interestingly, CD14+CD64+ monocyte was greatly elevated in HSIL and SCC, whereas intracellular IL-10+monocytes were not significantly different between cervical lesions. The correlation between increasing ratio of circulating CD64+/CD163+monocyte and density of infiltrating CD163+ monocytes was associated with severity of HPV infected cervical lesions. The elevated circulating CD64+/CD163+ monocyte ratio correlates to severity of HPV infected cervical lesions and might be a prognostic marker in cervical cancer progression.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com