Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (405)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • HPV E6/E7 (61) Apply HPV E6/E7 filter
  • ZIKV (42) Apply ZIKV filter
  • SIV (17) Apply SIV filter
  • HIV (15) Apply HIV filter
  • HPV-HR18 (11) Apply HPV-HR18 filter
  • HPV (11) Apply HPV filter
  • HIV-1 (8) Apply HIV-1 filter
  • TBD (7) Apply TBD filter
  • IL-10 (6) Apply IL-10 filter
  • HBV (6) Apply HBV filter
  • SIVmac239 (6) Apply SIVmac239 filter
  • CXCL10 (5) Apply CXCL10 filter
  • IFN-γ (5) Apply IFN-γ filter
  • IL-17A (5) Apply IL-17A filter
  • Il-6 (5) Apply Il-6 filter
  • EBOV (5) Apply EBOV filter
  • Ccl2 (4) Apply Ccl2 filter
  • HIV1 (4) Apply HIV1 filter
  • HPV18 (4) Apply HPV18 filter
  • MERS-CoV (4) Apply MERS-CoV filter
  • HPV-HR16 (4) Apply HPV-HR16 filter
  • SARS-CoV-2 (4) Apply SARS-CoV-2 filter
  • Cd8a (3) Apply Cd8a filter
  • CD4 (3) Apply CD4 filter
  • HPV16 (3) Apply HPV16 filter
  • TNF-α (3) Apply TNF-α filter
  • TGF-β (3) Apply TGF-β filter
  • HPV HR7 (3) Apply HPV HR7 filter
  • HEV (3) Apply HEV filter
  • EBER1 (3) Apply EBER1 filter
  • CCHFV (3) Apply CCHFV filter
  • MARV (3) Apply MARV filter
  • GAPDH (2) Apply GAPDH filter
  • IL17A (2) Apply IL17A filter
  • Cd163 (2) Apply Cd163 filter
  • CVB3 (2) Apply CVB3 filter
  • CXCL9 (2) Apply CXCL9 filter
  • TK (2) Apply TK filter
  • BRLF1 (2) Apply BRLF1 filter
  • BZLF1 (2) Apply BZLF1 filter
  • BMRF1 (2) Apply BMRF1 filter
  • IL-8 (2) Apply IL-8 filter
  • SVV ORF63 (2) Apply SVV ORF63 filter
  • SHFV (2) Apply SHFV filter
  • PCV3 (2) Apply PCV3 filter
  • Nipah (2) Apply Nipah filter
  • IL-22 (2) Apply IL-22 filter
  • CPV (2) Apply CPV filter
  • FPV (2) Apply FPV filter
  • MmuPV1 (2) Apply MmuPV1 filter

Product

  • RNAscope 2.0 Assay (87) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Red assay (87) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Fluorescent Multiplex Assay (25) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Brown Assay (16) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (15) Apply RNAscope 2.5 LS Assay filter
  • RNAscope (12) Apply RNAscope filter
  • RNAscope 2.5 HD Duplex (9) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 VS Assay (9) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Multiplex Fluorescent Assay (8) Apply RNAscope Multiplex Fluorescent Assay filter
  • BASEscope Assay RED (5) Apply BASEscope Assay RED filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (4) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope Multiplex Fluorescent v2 (1) Apply RNAscope Multiplex Fluorescent v2 filter
  • TBD (1) Apply TBD filter

Research area

  • (-) Remove Infectious Disease filter Infectious Disease (405)
  • Cancer (120) Apply Cancer filter
  • HPV (99) Apply HPV filter
  • Neuroscience (24) Apply Neuroscience filter
  • Inflammation (21) Apply Inflammation filter
  • Covid (6) Apply Covid filter
  • HIV (6) Apply HIV filter
  • Hepatitis B (4) Apply Hepatitis B filter
  • lncRNA (3) Apply lncRNA filter
  • Influenza A (2) Apply Influenza A filter
  • Reproduction (2) Apply Reproduction filter
  • Sudan ebolavirus (2) Apply Sudan ebolavirus filter
  • Zika Virus (2) Apply Zika Virus filter
  • Adrenal (1) Apply Adrenal filter
  • AIDS (1) Apply AIDS filter
  • CGT (1) Apply CGT filter
  • Chronic gastritis (1) Apply Chronic gastritis filter
  • E. coli (1) Apply E. coli filter
  • Eastern equine encephalitis virus (1) Apply Eastern equine encephalitis virus filter
  • Ebola Virus (1) Apply Ebola Virus filter
  • EBV (1) Apply EBV filter
  • Enteric viruses (1) Apply Enteric viruses filter
  • Epstein-Barr virus (1) Apply Epstein-Barr virus filter
  • Gene Editing (1) Apply Gene Editing filter
  • Gut Microbiota (1) Apply Gut Microbiota filter
  • hantavirus (1) Apply hantavirus filter
  • Hepatitis A virus (1) Apply Hepatitis A virus filter
  • hepatitis delta virus (1) Apply hepatitis delta virus filter
  • Herpes Virus Simplex (1) Apply Herpes Virus Simplex filter
  • Immunology (1) Apply Immunology filter
  • Influenza viruses (1) Apply Influenza viruses filter
  • Innate Immunity (1) Apply Innate Immunity filter
  • Kasokero virus (1) Apply Kasokero virus filter
  • Lloviu virus (1) Apply Lloviu virus filter
  • lymphadenopathy (1) Apply lymphadenopathy filter
  • Mucocutaneous Leishmaniasis (1) Apply Mucocutaneous Leishmaniasis filter
  • Senecavirus (1) Apply Senecavirus filter
  • Senecavirus A (SVA) (1) Apply Senecavirus A (SVA) filter
  • SIV (1) Apply SIV filter
  • Stem Cells (1) Apply Stem Cells filter
  • Tuberculosis (1) Apply Tuberculosis filter
  • Zika (1) Apply Zika filter
  • Zoological Disease (1) Apply Zoological Disease filter
  • Zoonotic Disease (1) Apply Zoonotic Disease filter

Category

  • Publications (405) Apply Publications filter
Livestock Susceptibility to Infection with Middle East Respiratory Syndrome Coronavirus.

Emerg Infect Dis.

2016 Dec 15

Vergara-Alert J, van den Brand JM, Widagdo W, Muñoz M 5th, Raj S, Schipper D, Solanes D, Cordón I, Bensaid A, Haagmans BL, Segalés J.
PMID: 27901465 | DOI: 10.3201/eid2302.161239

Middle East respiratory syndrome (MERS) cases continue to be reported, predominantly in Saudi Arabia and occasionally other countries. Although dromedaries are the main reservoir, other animal species might be susceptible to MERS coronavirus (MERS-CoV) infection and potentially serve as reservoirs. To determine whether other animals are potential reservoirs, we inoculated MERS-CoV into llamas, pigs, sheep, and horses and collected nasal and rectal swab samples at various times. The presence of MERS-CoV in the nose of pigs and llamas was confirmed by PCR, titration of infectious virus, immunohistochemistry, and in situ hybridization; seroconversion was detected in animals of both species. Conversely, in sheep and horses, virus-specific antibodies did not develop and no evidence of viral replication in the upper respiratory tract was found. These results prove the susceptibility of llamas and pigs to MERS-CoV infection. Thus, the possibility of MERS-CoV circulation in animals other than dromedaries, such as llamas and pigs, is not negligible.

Outbreaks of Neuroinvasive Astrovirus Associated with Encephalomyelitis, Weakness, and Paralysis among Weaned Pigs, Hungary

Emerg Infect Dis.

2017 Dec 01

Boros Á, Albert M, Pankovics P, Bíró H, Pesavento PA, Phan TG, Delwart E, Reuter G.
PMID: 29148391 | DOI: 10.3201/eid2312.170804

A large, highly prolific swine farm in Hungary had a 2-year history of neurologic disease among newly weaned (25- to 35-day-old) pigs, with clinical signs of posterior paraplegia and a high mortality rate. Affected pigs that were necropsied had encephalomyelitis and neural necrosis. Porcine astrovirus type 3 was identified by reverse transcription PCR and in situ hybridization in brain and spinal cord samples in 6 animals from this farm. Among tissues tested by quantitative RT-PCR, the highest viral loads were detected in brain stem and spinal cord. Similar porcine astrovirus type 3 was also detected in archived brain and spinal cord samples from another 2 geographically distant farms. Viral RNA was predominantly restricted to neurons, particularly in the brain stem, cerebellum (Purkinje cells), and cervical spinal cord. Astrovirus was generally undetectable in feces but present in respiratory samples, indicating a possible respiratory infection. Astrovirus could cause common, neuroinvasive epidemic disease.

A novel sheet-like virus particle array is a hallmark of Zika virus infection.

Emerg Microbes Infect.

2018 Apr 25

Liu J, Kline BA, Kenny TA, Smith DR, Soloveva V, Beitzel B, Pang S, Lockett S, Hess HF, Palacios G, Kuhn JH, Sun MG, Zeng X.
PMID: 29691373 | DOI: 10.1038/s41426-018-0071-8

Zika virus (ZIKV) is an emerging flavivirus that caused thousands of human infections in recent years. Compared to other human flaviviruses, ZIKV replication is not well understood. Using fluorescent, transmission electron, and focused ion beam-scanning electron microscopy, we examined ZIKV replication dynamics in Vero 76 cells and in the brains of infected laboratory mice. We observed the progressive development of a perinuclear flaviviral replication factory both in vitro and in vivo. In vitro, we illustrated the ZIKV lifecycle from particle cell entry to egress. ZIKV particles assembled and aggregated in an induced convoluted membrane structure and ZIKV strain-specific membranous vesicles. While most mature virus particles egressed via membrane budding, some particles also likely trafficked through late endosomes and egressed through membrane abscission. Interestingly, we consistently observed a novel sheet-like virus particle array consisting of a single layer of ZIKV particles. Our study further defines ZIKV replication and identifies a novel hallmark of ZIKV infection.

Clinicopathological features of HCV-positive splenic diffuse large B cell lymphoma.

Ann Hematol.

2019 Feb 07

Shimono J, Miyoshi H, Arakawa F, Yamada K, Sugio T, Miyawaki K, Eto T, Miyagishima T, Kato K, Nagafuji K, Akashi K, Teshima T, Ohshima K.
PMID: 30729289 | DOI: 10.1007/s00277-019-03628-8

The hepatitis C virus (HCV) is a single-stranded RNA virus which is thought to be involved in the onset of B cell lymphoma. HCV-positive diffuse large B cell lymphoma (DLBCL) has been reported to clinically manifest in extranodal lesions (e.g., in the liver, spleen, and stomach). Here, we investigated HCV-positive and -negative primary splenic DLBCL (p-spDLBCL) and non-primary splenic DLBCL (ordinary DLBCL). Furthermore, to examine HCV lymphomagenesis, RNA in situ hybridization (ISH), RT-PCR (reverse-transcription polymerase chain reaction), and NS3 immunostaining of HCV viral nonstructural proteins were performed. HCV-positive p-spDLBCL patients presented fewer B symptoms (asymptomatic) and better performance status, with elevated presence of splenic macronodular lesions and more germinal center B cell (GCB) sub-group cases than HCV-negative p-spDLBCL patients. However, HCV-positive ordinary DLBCL patients were found to have more non-GCB sub-group cases than HCV-negative ordinary DLBCL patients. HCV-positive DLBCL patients showed 20.6% (7/34) NS3 positivity, 16.7% (1/6) HCV-RNA in situ positivity, and 22.2% (2/9) detection of HCV-RNA in tumor tissue by RT-PCR. Splenic samples were found to have a higher frequency of HCV detection than lymph node samples, thus suggesting that HCV may be closely related to lymphomagenesis, especially in splenic lymphoma.

Cellular HIV Reservoirs and Viral Rebound from the Lymphoid Compartments of 4′-Ethynyl-2-Fluoro-2′-Deoxyadenosine (EFdA)-Suppressed Humanized Mice.

Viruses

2019 Mar 13

Maidji E, Moreno ME, Rivera JM, Joshi P, Galkina SA, Kosikova G, Somsouk M, Stoddart CA.
PMID: - | DOI: 10.3390/v11030256

Although antiretroviral therapy (ART) greatly suppresses HIV replication, lymphoid tissues remain a sanctuary site where the virus may replicate. Tracking the earliest steps of HIV spread from these cellular reservoirs after drug cessation is pivotal for elucidating how infection can be prevented. In this study, we developed an in vivo model of HIV persistence in which viral replication in the lymphoid compartments of humanized mice was inhibited by the HIV reverse transcriptase inhibitor 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) to very low levels, which recapitulated ART-suppression in HIV-infected individuals. Using a combination of RNAscope in situ hybridization (ISH) and immunohistochemistry (IHC), we quantitatively investigated the distribution of HIV in the lymphoid tissues of humanized mice during active infection, EFdA suppression, and after drug cessation. The lymphoid compartments of EFdA-suppressed humanized mice harbored very rare transcription/translation-competent HIV reservoirs that enable viral rebound. Our data provided the visualization and direct measurement of the early steps of HIV reservoir expansion within anatomically intact lymphoid tissues soon after EFdA cessation and suggest a strategy to enhance therapeutic approaches aimed at eliminating the HIV reservoir.

Epstein-Barr Virus and the Pathogenesis of Diffuse Large B-Cell Lymphoma

Life (Basel, Switzerland)

2023 Feb 14

Ross, AM;Leahy, CI;Neylon, F;Steigerova, J;Flodr, P;Navratilova, M;Urbankova, H;Vrzalikova, K;Mundo, L;Lazzi, S;Leoncini, L;Pugh, M;Murray, PG;
PMID: 36836878 | DOI: 10.3390/life13020521

Epstein-Barr virus (EBV), defined as a group I carcinogen by the World Health Organization (WHO), is present in the tumour cells of patients with different forms of B-cell lymphoma, including Burkitt lymphoma, Hodgkin lymphoma, post-transplant lymphoproliferative disorders, and, most recently, diffuse large B-cell lymphoma (DLBCL). Understanding how EBV contributes to the development of these different types of B-cell lymphoma has not only provided fundamental insights into the underlying mechanisms of viral oncogenesis, but has also highlighted potential new therapeutic opportunities. In this review, we describe the effects of EBV infection in normal B-cells and we address the germinal centre model of infection and how this can lead to lymphoma in some instances. We then explore the recent reclassification of EBV+ DLBCL as an established entity in the WHO fifth edition and ICC 2022 classifications, emphasising the unique nature of this entity. To that end, we also explore the unique genetic background of this entity and briefly discuss the potential role of the tumour microenvironment in lymphomagenesis and disease progression. Despite the recent progress in elucidating the mechanisms of this malignancy, much work remains to be done to improve patient stratification, treatment strategies, and outcomes.
Senecavirus A: Frequently asked questions

Journal of Swine Health and Production

2022 May 02

Buckley, A;Lager, K;
| DOI: 10.54846/jshap/1270

Senecavirus A (SVA) has been demonstrated to be a causative agent for vesicular disease in swine. It is clinically indistinguishable from other agents that cause vesicular disease such as foot-and-mouth disease virus (FMDV), which is a reportable foreign animal disease (FAD). Thus, an investigation is initiated to rule out FMDV every time a vesicle is observed. Senecavirus A has now been reported across the Americas and Asia, and it appears the ecology of this virus has changed from sporadic infections to an endemic disease in some areas. In addition to vesicular disease, there have also been reports of increased neonatal mortality on affected sow farms. Knowledge about the pathogenesis of SVA in swine can provide many benefits to the swine industry. Understanding how long the virus can be detected in various sample types after infection can aide in choosing the correct samples to collect for diagnosis. In addition, the duration of virus shedding can help determine measures to control virus spread between animals. Prevention of SVA infection and disease with an efficacious vaccine could improve swine welfare, minimize SVA transmission, and reduce the burden of FAD investigations.
Correlation of p16 immunohistochemistry in FNA biopsies with corresponding tissue specimens in HPV-related squamous cell carcinomas of the oropharynx.

Cancer Cytopathol. 2015 Aug 4.

Jalaly JB, Lewis JS Jr, Collins BT, Wu X, Ma XJ, Luo Y, Bernadt CT.
PMID: 26242494 | DOI: 10.1002/cncy.21600.

Abstract BACKGROUND: Human papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma (SCC) is a unique form of carcinoma that is important to identify for prognosis and treatment. Immunohistochemistry (IHC) for p16 (also known as cyclin-dependent kinase inhibitor 2A, multiple tumor suppressor 1) is used as a surrogate marker for transcriptionally active, high-risk HPV. The primary objective of this study was to correlate p16 IHC of cell blocks from fine-needle aspirations (FNAs) with surgical pathology specimens of HPV-related oropharyngeal SCC. METHODS: In total, 48 patients who had a diagnosis of oropharyngeal or nonoropharyngeal SCC and also had an FNA that demonstrated metastatic SCC with available cell block material were identified. IHC for p16 was evaluated on both FNA cell blocks and surgical pathology specimens. In situ hybridization for high-risk HPV messenger RNA was performed on 31 of the FNA cell blocks. RESULTS: Although partial p16 staining was observed in the majority of cell blocks, there was concordance in 47 of 48 FNAs (98%) with surgical pathology specimens when strong positive p16 staining of at least 15% of tumor cells in FNA cell block material was present. In addition, high-risk HPV RNA in situ hybridization demonstrated a high correlation with p16 staining in surgical pathology specimens (96%) and FNAs (93%). CONCLUSIONS: There was excellent correlation between p16 IHC of FNA cell blocks and surgical pathology specimens using a cutoff of at least 15% positive staining in cell blocks. The recommended threshold (70% positive staining) for surgical pathology specimens may yield a high rate of false-negative results if applied to FNA cell blocks.
A novel RT‐PCR method for quantification of human papillomavirus transcripts in archived tissues and its application in oropharyngeal cancer prognosis. 

International Journal of Cancer, 132(4), 882–890.

Gao G, Chernock RD, Gay HA, Thorstad WL, Zhang TR, Wang H, Ma XJ, Luo Y, Lewis JS Jr, Wang X (2013).
PMID: 22821242 | DOI: 10.1002/ijc.27739.

Oropharyngeal squamous cell carcinoma (SCC) is strongly associated with human papillomavirus (HPV) infection, which is distinctively different from most other head and neck cancers. However, a robust quantitative reverse transcription PCR (RT-qPCR) method for comprehensive expression profiling of HPV genes in routinely fixed tissues has not been reported. To address this issue, we have established a new real-time RT-PCR method for the expression profiling of the E6 and E7 oncogenes from 13 high-risk HPV types. This method was validated in cervical cancer and by comparison with another HPV RNA detection method (in situ hybridization) in oropharyngeal tumors. In addition, the expression profiles of selected HPV-related human genes were also analyzed. HPV E6 and E7 expression profiles were then analyzed in 150 archived oropharyngeal SCC samples and compared with other variables and with patient outcomes. Our study showed that RT-qPCR and RNA in situ hybridization were 100% concordant in determining HPV status. HPV transcriptional activity was found in most oropharyngeal SCC (81.3%), a prevalence that is higher than in previous studies. Besides HPV16, three other HPV types were also detected, including 33, 35 and 18. Furthermore, HPV and p16 had essentially identical expression signatures, and both HPV and p16 were prognostic biomarkers for the prediction of disease outcome. Thus, p16 mRNA or protein expression signature is a sensitive and specific surrogate marker for HPV transcriptional activity (all genotypes combined).
B7-H1 Expression Model for Immune Evasion in Human Papillomavirus-Related Oropharyngeal Squamous Cell Carcinoma. 

Head and neck pathology, 7(2):113–21.

Ukpo OC, Thorstad WL, Lewis JS Jr (2012).
PMID: 23179191 | DOI: 10.1007/s12105-012-0406-z.

Human papillomavirus (HPV) is associated with oropharyngeal squamous cell carcinomas. Persistent viral infection is postulated to lead to carcinogenesis, although infection of benign adjacent epithelium is not typically observed. It is known that immune evasive tumor cells can provide an ideal niche for a virus. The B7-H1/PD-1 cosignaling pathway plays an important role in viral immune evasion by rendering CD8+ cytotoxic T cells anergic. We hypothesized that HPV-related oropharyngeal squamous cell carcinomas express B7-H1 as a mechanism for immune evasion. A tissue microarray was utilized, for which HPV E6/E7 mRNA by in situ hybridization was previously performed. Immunohistochemistry was performed to detect B7-H1 and staining was characterized by pattern, distribution, and intensity. B7-H1 was expressed by 84 of the 181 (46.4%) cases. Both tumor cell membranous and cytoplasmic expression were present and cytoplasmic expression was identified in some peritumoral lymphocytes. Expression was analyzed in several different ways and then considered binarily as positive versus negative. Tumors expressing B7-H1 were more likely to be HPV positive (49.2 vs. 34.1 %, p = 0.08). B7-H1 expression showed no correlation with disease recurrence in the entire cohort (OR = 1.09, p = 0.66), HPV positive cohort (OR = 0.80, p = 0.69) or HPV negative cohort (OR = 2.02, p = 0.22). However, B7-H1 expression intensity did correlate with the development of distant metastasis (p = 0.03), and B7-H1 intensity of 3+ (versus all other staining) showed a strong trend towards distant metastasis in the HPV positive (OR = 6.67, p = 0.13) and HPV negative (OR = 9.0, p = 0.13) cohorts. There was no correlation between B7-H1 expression and patient survival for any of the different ways in which staining was characterized, whether binarily, by distribution, intensity, or combined scores. B7-H1 is expressed in the majority of oropharyngeal squamous cell carcinomas with transcriptionally-active HPV. This suggests that B7-H1 expression by tumor cells may play a role in harboring persistent HPV infection.
Molecular Effects of Stromal Selective Targeting by uPAR Retargeted Oncolytic Virus in Breast Cancer

Mol Cancer Res.

2017 Jul 05

Jing Y, Chavez V, Ban Y, Acquavella N, El-Ashry D, Pronin A, Chen X, Merchan JR.
PMID: 28679779 | DOI: 10.1158/1541-7786.MCR-17-0016

The tumor microenvironment (TME) is a relevant target for novel biological therapies. MV-m-uPA and MV-h-uPA are fully retargeted, species-specific, oncolytic measles viruses (MVs) directed against murine or human urokinase receptor (PLAUR/uPAR), expressed in tumor and stromal cells. The effects of stromal selective targeting by uPAR retargeted MVs were investigated. In vitro infection, virus-induced GFP expression and cytotoxicity by MV-h-uPA and MV-m-uPA were demonstrated in human and murine cancer cells and cancer associated fibroblasts (CAFs) in a species-specific manner. In a murine fibroblast/human breast cancer 3D co-culture model, selective fibroblast targeting by MV-m-uPA inhibited breast cancer cell growth. Systemic administration of murine specific MV-m-uPA in mice bearing human MDA-MB 231 xenografts was associated with a significant delay in tumor progression and improved survival compared to controls. Experiments comparing tumor (MV-h-uPA) vs. stromal (MV-m-uPA) vs. combined virus targeting showed that tumor and stromal targeting was associated with improved tumor control over the other groups. Correlative studies confirmed in vivo viral targeting of tumor stroma by MV-m-uPA, increased apoptosis, and virus induced differential regulation of murine stromal genes associated with inflammatory, angiogenesis and survival pathways, as well as indirect regulation of human cancer pathways, indicating viral induced modulation of tumor-stromal interactions. These data demonstrate the feasibility of stromal selective targeting by an oncolytic MV, virus-induced modulation of tumor-stromal pathways, and subsequent tumor growth delay. These findings further validate the critical role of stromal uPAR in cancer progression and the potential of oncolytic viruses as anti-stromal agents.

Viral persistence, liver disease and host response in Hepatitis C-like virus rat model

Hepatology

2017 Aug 31

Trivedi S, Murthy S, Sharma H, Hartlage AS, Kumar A, Gadi S, Simmonds P, Chauhan LV, Scheel TKH, Billerbeck E, Burbelo PD, Rice CM, Lipkin WI, Vandergrift K, Cullen JM, Kapoor A.
PMID: 28859226 | DOI: 10.1002/hep.29494

The lack of a relevant, tractable, and immunocompetent animal model for hepatitis C virus (HCV) has severely impeded investigations of viral persistence, immunity and pathogenesis. In the absence of immunocompetent models with robust HCV infection, homolog hepaciviruses in their natural host could potentially provide useful surrogate models. We isolated a rodent hepacivirus (RHV) from wild rats (Rattus norvegicus), RHV-rn1, acquired the complete viral genome sequence and developed an infectious reverse genetics system. RHV-rn1 resembles HCV in genomic features including the pattern of polyprotein cleavage sites and secondary structures in the viral 5' and 3' UTRs. We used site-directed and random mutagenesis to determine that only the first of the two miR-122 seed sites in viral 5'UTR is required for viral replication and persistence in rats. Next, we used the clone derived virus progeny to infect several inbred and outbred rat strains. Our results determined that RHV-rn1 possesses several HCV-defining hallmarks: hepatotropism, propensity to persist, and the ability of induce gradual liver damage. Histological examination of liver samples revealed the presence of lymphoid aggregates, parenchymal inflammation and macro/micro vesicular steatosis in chronically infected rats. Gene expression analysis demonstrated that the intrahepatic response during RHV-rn1 infection in rats mirrors that of HCV infection, including persistent activation of interferon signaling pathways. Finally, we determined that the backbone drug of HCV direct acting antiviral (DAA) therapy, Sofosbuvir, effectively suppresses chronic RHV-rn1 infection in rats. Taken together, we developed RHV-rn1 infected rats as a fully immunocompetent and informative surrogate model to delineate the mechanisms of HCV-related viral persistence, immunity and pathogenesis.

Pages

  • « first
  • ‹ previous
  • …
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?