Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (405)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • HPV E6/E7 (61) Apply HPV E6/E7 filter
  • ZIKV (42) Apply ZIKV filter
  • SIV (17) Apply SIV filter
  • HIV (15) Apply HIV filter
  • HPV-HR18 (11) Apply HPV-HR18 filter
  • HPV (11) Apply HPV filter
  • HIV-1 (8) Apply HIV-1 filter
  • TBD (7) Apply TBD filter
  • IL-10 (6) Apply IL-10 filter
  • HBV (6) Apply HBV filter
  • SIVmac239 (6) Apply SIVmac239 filter
  • CXCL10 (5) Apply CXCL10 filter
  • IFN-γ (5) Apply IFN-γ filter
  • IL-17A (5) Apply IL-17A filter
  • Il-6 (5) Apply Il-6 filter
  • EBOV (5) Apply EBOV filter
  • Ccl2 (4) Apply Ccl2 filter
  • HIV1 (4) Apply HIV1 filter
  • HPV18 (4) Apply HPV18 filter
  • MERS-CoV (4) Apply MERS-CoV filter
  • HPV-HR16 (4) Apply HPV-HR16 filter
  • SARS-CoV-2 (4) Apply SARS-CoV-2 filter
  • Cd8a (3) Apply Cd8a filter
  • CD4 (3) Apply CD4 filter
  • HPV16 (3) Apply HPV16 filter
  • TNF-α (3) Apply TNF-α filter
  • TGF-β (3) Apply TGF-β filter
  • HPV HR7 (3) Apply HPV HR7 filter
  • HEV (3) Apply HEV filter
  • EBER1 (3) Apply EBER1 filter
  • CCHFV (3) Apply CCHFV filter
  • MARV (3) Apply MARV filter
  • GAPDH (2) Apply GAPDH filter
  • IL17A (2) Apply IL17A filter
  • Cd163 (2) Apply Cd163 filter
  • CVB3 (2) Apply CVB3 filter
  • CXCL9 (2) Apply CXCL9 filter
  • TK (2) Apply TK filter
  • BRLF1 (2) Apply BRLF1 filter
  • BZLF1 (2) Apply BZLF1 filter
  • BMRF1 (2) Apply BMRF1 filter
  • IL-8 (2) Apply IL-8 filter
  • SVV ORF63 (2) Apply SVV ORF63 filter
  • SHFV (2) Apply SHFV filter
  • PCV3 (2) Apply PCV3 filter
  • Nipah (2) Apply Nipah filter
  • IL-22 (2) Apply IL-22 filter
  • CPV (2) Apply CPV filter
  • FPV (2) Apply FPV filter
  • MmuPV1 (2) Apply MmuPV1 filter

Product

  • RNAscope 2.0 Assay (87) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Red assay (87) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Fluorescent Multiplex Assay (25) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Brown Assay (16) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (15) Apply RNAscope 2.5 LS Assay filter
  • RNAscope (12) Apply RNAscope filter
  • RNAscope 2.5 HD Duplex (9) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 VS Assay (9) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Multiplex Fluorescent Assay (8) Apply RNAscope Multiplex Fluorescent Assay filter
  • BASEscope Assay RED (5) Apply BASEscope Assay RED filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (4) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope Multiplex Fluorescent v2 (1) Apply RNAscope Multiplex Fluorescent v2 filter
  • TBD (1) Apply TBD filter

Research area

  • (-) Remove Infectious Disease filter Infectious Disease (405)
  • Cancer (120) Apply Cancer filter
  • HPV (99) Apply HPV filter
  • Neuroscience (24) Apply Neuroscience filter
  • Inflammation (21) Apply Inflammation filter
  • Covid (6) Apply Covid filter
  • HIV (6) Apply HIV filter
  • Hepatitis B (4) Apply Hepatitis B filter
  • lncRNA (3) Apply lncRNA filter
  • Influenza A (2) Apply Influenza A filter
  • Reproduction (2) Apply Reproduction filter
  • Sudan ebolavirus (2) Apply Sudan ebolavirus filter
  • Zika Virus (2) Apply Zika Virus filter
  • Adrenal (1) Apply Adrenal filter
  • AIDS (1) Apply AIDS filter
  • CGT (1) Apply CGT filter
  • Chronic gastritis (1) Apply Chronic gastritis filter
  • E. coli (1) Apply E. coli filter
  • Eastern equine encephalitis virus (1) Apply Eastern equine encephalitis virus filter
  • Ebola Virus (1) Apply Ebola Virus filter
  • EBV (1) Apply EBV filter
  • Enteric viruses (1) Apply Enteric viruses filter
  • Epstein-Barr virus (1) Apply Epstein-Barr virus filter
  • Gene Editing (1) Apply Gene Editing filter
  • Gut Microbiota (1) Apply Gut Microbiota filter
  • hantavirus (1) Apply hantavirus filter
  • Hepatitis A virus (1) Apply Hepatitis A virus filter
  • hepatitis delta virus (1) Apply hepatitis delta virus filter
  • Herpes Virus Simplex (1) Apply Herpes Virus Simplex filter
  • Immunology (1) Apply Immunology filter
  • Influenza viruses (1) Apply Influenza viruses filter
  • Innate Immunity (1) Apply Innate Immunity filter
  • Kasokero virus (1) Apply Kasokero virus filter
  • Lloviu virus (1) Apply Lloviu virus filter
  • lymphadenopathy (1) Apply lymphadenopathy filter
  • Mucocutaneous Leishmaniasis (1) Apply Mucocutaneous Leishmaniasis filter
  • Senecavirus (1) Apply Senecavirus filter
  • Senecavirus A (SVA) (1) Apply Senecavirus A (SVA) filter
  • SIV (1) Apply SIV filter
  • Stem Cells (1) Apply Stem Cells filter
  • Tuberculosis (1) Apply Tuberculosis filter
  • Zika (1) Apply Zika filter
  • Zoological Disease (1) Apply Zoological Disease filter
  • Zoonotic Disease (1) Apply Zoonotic Disease filter

Category

  • Publications (405) Apply Publications filter
B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers.

Nat Med. 2015 Jan 19.

Fukazawa Y, Lum R, Okoye AA, Park H, Matsuda K, Bae JY, Hagen SI, Shoemaker R, Deleage C, Lucero C, Morcock D, Swanson T, Legasse AW, Axthelm MK, Hesselgesser J, Geleziunas R, Hirsch VM, Edlefsen PT, Piatak M Jr, Estes JD, Lifson JD, Picker LJ.
PMID: 25599132 | DOI: 10.1038/nm.3781.

Chronic-phase HIV and simian immunodeficiency virus (SIV) replication is reduced by as much as 10,000-fold in elite controllers (ECs) compared with typical progressors (TPs), but sufficient viral replication persists in EC tissues to allow viral sequence evolution and induce excess immune activation. Here we show that productive SIV infection in rhesus monkey ECs, but not TPs, is markedly restricted to CD4+ follicular helper T (TFH) cells, suggesting that these EC monkeys' highly effective SIV-specific CD8+ T cells can effectively clear productive SIV infection from extrafollicular sites, but their relative exclusion from B cell follicles prevents their elimination of productively infected TFH cells. CD8+ lymphocyte depletion in EC monkeys resulted in a dramatic re-distribution of productive SIV infection to non-TFH cells, with restriction of productive infection to TFH cells resuming upon CD8+ T cell recovery. Thus, B cell follicles constitute 'sanctuaries' for persistent SIV replication in the presence of potent anti-viral CD8+ T cell responses, potentially complicating efforts to cure HIV infection with therapeutic vaccination or T cell immunotherapy.
Human papilloma virus testing in oropharyngeal squamous cell carcinoma: What the clinician should know.

Oral oncology, 50(1):1–9.

Mirghani H1, Amen F2, Moreau F3, Guigay J4, Ferchiou M5, Melkane AE6, Hartl DM7, Lacau St Guily J (2014).
PMID: 24169585 | DOI: 10.1016/j.oraloncology.2013.10.008.

High risk Human Papilloma virus (HR-HPV) associated oropharyngeal cancers are on the increase. Although, the scientific community is aware of the importance of Human Papilloma Virus (HPV) testing, there is no consensus on the assays that are required to reliably identify HR-HPV related tumors. A wide range of methods have been developed. The most widely used techniques include viral DNA detection, with polymerase chain reaction (PCR) or In Situ Hybridization, and p16 detected by immunohistochemistry. However, these tests provide different information and have their own specific limitations. In this review, we summarize these different techniques, in light of the recent literature. p16 Overexpression, which is an indirect marker of HPV infection, is considered by many head and neck oncologists to be the most important marker for patient stratification. We describe the frequent lack of concordance of this marker with other assays and the possible reasons for this. The latest developments in HPV testing are also reported, such as the RNAscope™ HPV test, and how they fit into the existing framework of techniques. HPV testing must not be considered in isolation, as there are important interactions with other parameters, such as tobacco exposure. This is an important and rapidly evolving field and is likely to become pivotal to staging and choice of treatment of oropharyngeal carcinoma in the future.
Extensive HPV-Related Carcinoma In Situ of the Upper Aerodigestive Tract with ‘Nonkeratinizing’Histologic Features.

Head and neck pathology, 1–7.

Chernock RD, Nussenbaum B, Thorstad WL, Luo Y, Ma XJ, El-Mofty SK, Lewis JS Jr (2013).
PMID: 24151062.

Over the past several decades, it has become clear that human papillomavirus (HPV) is important for the development and progression of many head and neck squamous cell carcinomas, particularly those arising in the oropharyngeal tonsillar crypts. Yet, our understanding of HPV's role in premalignant squamous lesions remains relatively poor. This is in part because premalignant lesions of the oropharyngeal tonsillar crypt tissue, where most HPV-related carcinomas arise, are difficult if not impossible to identify. Recent evidence does suggest a role for HPV in a subset of premalignant lesions of the surface epithelium, especially the oral cavity, despite the rarity of HPV-related invasive squamous cell carcinomas at this site. Furthermore, these HPV-related oral cavity dysplasias appear to have unique, bowenoid histologic features described as 'basaloid' with full-thickness loss of squamous maturation, mitotic figures and apoptosis throughout. Here, we present a unique case of an HPV-related premalignant lesion (squamous cell carcinoma in situ) extensively involving the surface epithelium of the oral cavity, oropharynx and larynx that had 'nonkeratinizing' histologic features typical of HPV-related invasive squamous cell carcinoma. This case was strongly p16 positive by immunohistochemistry and harbored transcriptionally active HPV as demonstrated by E6/E7 RNA in situ hybridization. Furthermore, the patient had an excellent response to radiation treatment.
RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. 

The Journal of Molecular Diagnostics, 14(1), 22–29.

Wang, F, Flanagan, J, Su N, Wang LC, Bui S, Nielson A, Wu X, Vo HT, Ma XJ, Luo Y. (2012).
PMID: 22166544 | DOI: 10.1016/j.jmoldx.2011.08.002.

In situ analysis of biomarkers is highly desirable in molecular pathology because it allows the examination of biomarker status within the histopathological context of clinical specimens. Immunohistochemistry and DNA in situ hybridization (ISH) are widely used in clinical settings to assess protein and DNA biomarkers, respectively, but clinical use of in situ RNA analysis is rare. This disparity is especially notable when considering the abundance of RNA biomarkers discovered through whole-genome expression profiling. This is largely due to the high degree of technical complexity and insufficient sensitivity and specificity of current RNA ISH techniques. Here, we describe RNAscope, a novel RNA ISH technology with a unique probe design strategy that allows simultaneous signal amplification and background suppression to achieve single-molecule visualization while preserving tissue morphology. RNAscope is compatible with routine formalin-fixed, paraffin-embedded tissue specimens and can use either conventional chromogenic dyes for bright-field microscopy or fluorescent dyes for multiplex analysis. Unlike grind-and-bind RNA analysis methods such as real-time RT-PCR, RNAscope brings the benefits of in situ analysis to RNA biomarkers and may enable rapid development of RNA ISH-based molecular diagnostic assays.
Characterization of the immune response in ganglia after primary simian varicella virus infection.

J Neurovirol.

2015 Dec 16

Ouwendijk WJ, Getu S, Mahalingam R, Gilden D, Osterhaus AD, Verjans GM.
PMID: 26676825 | DOI: -

Primary simian varicella virus (SVV) infection in non-human primates causes varicella, after which the virus becomes latent in ganglionic neurons and reactivates to cause zoster. The host response in ganglia during establishment of latency is ill-defined. Ganglia from five African green monkeys (AGMs) obtained at 9, 13, and 20 days post-intratracheal SVV inoculation (dpi) were analyzed by ex vivo flow cytometry, immunohistochemistry, and in situ hybridization. Ganglia at 13 and 20 dpi exhibited mild inflammation. Immune infiltrates consisted mostly of CD8dim and CD8bright memory T cells, some of which expressed granzyme B, and fewer CD11c+ and CD68+ cells. Chemoattractant CXCL10 transcripts were expressed in neurons and infiltrating inflammatory cells but did not co-localize with SVV open reading frame 63 (ORF63) RNA expression. Satellite glial cells expressed increased levels of activation markers CD68 and MHC class II at 13 and 20 dpi compared to those at 9 dpi. Overall, local immune responses emerged as viral DNA load in ganglia declined, suggesting that intra-ganglionic immunity contributes to restricting SVV replication.

Specific Detection of Two Divergent Simian Arteriviruses Using RNAscope In Situ Hybridization

PLoS One

2016 Mar 10

Yú SQ, Caì Y, Lyons C, Johnson RF, Postnikova E, Mazur S, Johnson JC, Radoshitzky SR, Bailey AL, Lauck M, Goldberg TL, O'Connor DH, Jahrling PB, Friedrich TC, Kuhn JH.
PMID: 26963736 | DOI: 10.1371/journal.pone.0151313

Simian hemorrhagic fever (SHF) is an often lethal disease of Asian macaques. Simian hemorrhagic fever virus (SHFV) is one of at least three distinct simian arteriviruses that can cause SHF, but pathogenesis studies using modern methods have been scarce. Even seemingly straightforward studies, such as examining viral tissue and cell tropism in vivo, have been difficult to conduct due to the absence of standardized SHFV-specific reagents. Here we report the establishment of an in situ hybridization assay for the detection of SHFV and distantly related Kibale red colobus virus 1 (KRCV-1) RNA in cell culture. In addition, we detected SHFV RNA in formalin-fixed, paraffin-embedded tissues from an infected rhesus monkey (Macaca mulatta). The assay is easily performed and can clearly distinguish between SHFV and KRCV-1. Thus, if further developed, this assay may be useful during future studies evaluating the mechanisms by which a simian arterivirus with a restricted cell tropism can cause a lethal nonhuman primate disease similar in clinical presentation to human viral hemorrhagic fevers.

Concurrent human papillomavirus-positive squamous cell carcinoma of the oropharynx in a married couple

Case Reports in Otolaryngology

2016 May 25

Brobst T, García J, Rowe Price KA, Gao G, Smith DI, Price D.
PMID: - | DOI: -

Abstract
Background:

Although alcohol and tobacco use are known risk factors for development of squamous cell carcinoma in the head and neck, human papillomavirus (HPV) has been increasingly associated with this group of cancers. We describe the case of a married couple who presented with HPV-positive oropharynx squamous cell carcinoma within two months of each other.

Methods:

Tumor biopsies were positive for p16 and high-risk HPV in both patients. Sanger sequencing showed a nearly identical HPV16 strain in both patients. Both patients received chemoradiation, and one  patient also underwent transoral robotic tongue base resection with bilateral neck dissection.

Results:

Both patients showed no evidence of recurrent disease on follow-up PET imaging.

Conclusions:

New head and neck symptoms should be promptly evaluated in the partner of a patient with known HPV-positive oropharynx cancer. This case expands the limited current literature on concurrent presentation of HPV-positive oropharynx squamous cell carcinoma in couples. 

CD8(+) Lymphocytes Are Required for Maintaining Viral Suppression in SIV-Infected Macaques Treated with Short-Term Antiretroviral Therapy.

Immunity.

2016 Sep 20

Cartwright EK, Spicer L, Smith SA, Lee D, Fast R, Paganini S, Lawson BO, Nega M, Easley K, Schmitz JE, Bosinger SE, Paiardini M, Chahroudi A, Vanderford TH, Estes JD, Lifson JD, Derdeyn CA, Silvestri G.
PMID: 27653601 | DOI: 10.1016/j.immuni.2016.08.018

Infection with HIV persists despite suppressive antiretroviral therapy (ART), and treatment interruption results in rapid viral rebound. Antibody-mediated CD8(+) lymphocyte depletion in simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs) shows that these cells contribute to viral control in untreated animals. However, the contribution of CD8(+) lymphocytes to maintaining viral suppression under ART remains unknown. Here, we have shown that in SIV-infected RMs treated with short-term (i.e., 8-32 week) ART, depletion of CD8(+) lymphocytes resulted in increased plasma viremia in all animals and that repopulation of CD8(+) T cells was associated with prompt reestablishment of virus control. Although the number of SIV-DNA-positive cells remained unchanged after CD8 depletion and reconstitution, the frequency of SIV-infected CD4(+) T cells before depletion positively correlated with both the peak and area under the curve of viremia after depletion. These results suggest a role for CD8(+) T cells in controlling viral production during ART, thus providing a rationale for exploring immunotherapeutic approaches in ART-treated HIV-infected individuals.

Zika Virus RNA Replication and Persistence in Brain and Placental Tissue

Emerg Infect Dis.

2016 Dec 15

Bhatnagar J, Rabeneck DB, Martines RB, Reagan-Steiner S, Ermias Y, Estetter LB, Suzuki T, Ritter J, Keating MK, Hale G, Gary J, Muehlenbachs A, Lambert A, Lanciotti R, Oduyebo T, Meaney-Delman D, Bolaños F, Saad EA, Shieh WJ, Zaki SR.
PMID: 27959260 | DOI: 10.3201/eid2303.161499

Zika virus is causally linked with congenital microcephaly and may be associated with pregnancy loss. However, the mechanisms of Zika virus intrauterine transmission and replication and its tropism and persistence in tissues are poorly understood. We tested tissues from 52 case-patients: 8 infants with microcephaly who died and 44 women suspected of being infected with Zika virus during pregnancy. By reverse transcription PCR, tissues from 32 (62%) case-patients (brains from 8 infants with microcephaly and placental/fetal tissues from 24 women) were positive for Zika virus. In situ hybridization localized replicative Zika virus RNA in brains of 7 infants and in placentas of 9 women who had pregnancy losses during the first or second trimester. These findings demonstrate that Zika virus replicates and persists in fetal brains and placentas, providing direct evidence of its association with microcephaly. Tissue-based reverse transcription PCR extends the time frame of Zika virus detection in congenital and pregnancy-associated infections.

Modeling Powassan virus infection in Peromyscus leucopus, a natural host

PLoS Negl Trop Dis.

2017 Jan 31

Mlera L, Meade-White K, Saturday G, Scott D, Bloom ME.
PMID: 28141800 | DOI: 10.1371/journal.pntd.0005346

The tick-borne flavivirus, Powassan virus (POWV) causes life-threatening encephalitis in humans in North America and Europe. POWV is transmitted by ixodid tick vectors that feed on small to medium-sized mammals, such as Peromyscus leucopus mice, which may serve as either reservoir, bridge or amplification hosts. Intraperitoneal and intracranial inoculation of 4-week old Peromyscus leucopus mice with 103 PFU of POWV did not result in overt clinical signs of disease. However, following intracranial inoculation, infected mice seroconverted to POWV and histopathological examinations revealed that the mice uniformly developed mild lymphocytic perivascular cuffing and microgliosis in the brain and spinal cord from 5 to 15 days post infection (dpi), suggesting an early inflammatory response. In contrast, intracranial inoculation of 4-week old C57BL/6 and BALB/c mice was lethal by 5 dpi. Intraperitoneal inoculation was lethal in BALB/c mice, but 40% (2/5) of C57BL/6 mice survived. We concluded that Peromyscus leucopus mice infected i.c. with a lethal dose of POWV support a limited infection, restricted to the central nervous system and mount an antibody response to the virus. However, they fail to develop clinical signs of disease and are able to control the infection. These results suggest the involvement of restriction factors, and the mechanism by which Peromyscus leucopus mice restrict POWV infection remains under study.

Gestational Stage and IFN-λ Signaling Regulate ZIKV Infection In Utero.

Cell Host Microbe.

2017 Sep 13

Jagger BW, Miner JJ, Cao B, Arora N, Smith AM, Kovacs A, Mysorekar IU, Coyne CB, Diamond MS.
PMID: 28910635 | DOI: 10.1016/j.chom.2017.08.012

Although Zika virus (ZIKV)-induced congenital disease occurs more frequently during early stages of pregnancy, its basis remains undefined. Using established type I interferon (IFN)-deficient mouse models of ZIKV transmission in utero, we found that the placenta and fetus were more susceptible to ZIKV infection at earlier gestational stages. Whereas ZIKV infection at embryonic day 6 (E6) resulted in placental insufficiency and fetal demise, infections at midstage (E9) resulted in reduced cranial dimensions, and infection later in pregnancy (E12) caused no apparent fetal disease. In addition, we found that fetuses lacking type III IFN-λ signaling had increased ZIKV replication in the placenta and fetus when infected at E12, and reciprocally, treatment of pregnant mice with IFN-λ2 reduced ZIKV infection. IFN-λ treatment analogously diminished ZIKV infection in human midgestation fetal- and maternal-derived tissue explants. Our data establish a model of gestational stage dependence of ZIKV pathogenesis and IFN-λ-mediated immunity at the maternal-fetal interface.

Characterization of a Vesivirus Associated with an Outbreak of Acute Hemorrhagic Gastroenteritis in Domestic Dogs

J Clin Microbiol.

2018 Feb 14

Renshaw RW, Griffing J, Weisman J, Crofton LM, Laverack MA, Poston RP, Duhamel GE, Dubovi EJ.
PMID: 29444830 | DOI: 10.1128/JCM.01951-17

Four out of eleven affected dogs died despite aggressive treatment during a 2015 focal outbreak of hemorrhagic gastroenteritis following a stay in a pet housing facility. Routine diagnostic investigations failed to identify a specific cause. Virus isolation from fresh necropsy tissues yielded a calicivirus with sequence homology to a vesivirus within the group colloquially known as the 2117 strains that were originally identified as contaminants in CHO cell bioreactors. In situ hybridization and reverse transcription-PCR assays of tissues from the four deceased dogs confirmed the presence of canine vesivirus (CaVV) nucleic acids that localized to endothelial cells of arterial and capillary blood vessels. CaVV nucleic acid corresponded to areas of necrosis and hemorrhage primarily in the intestinal tract, but also in the brain of one dog with nonsuppurative meningoencephalitis. This is the first report of an atypical disease association with a putative hypervirulent vesivirus strain in dogs as all other known strains of CaVV appear to cause non-clinical infections or relatively mild disease. Following identification of the CU-296 vesivirus strain from this outbreak, four additional CaVV strains were amplified from unrelated fecal specimens and archived stocks provided by other laboratories. Broader questions include the origins, reservoir(s), and potential for re-emergence and spread of these related CaVVs.

Pages

  • « first
  • ‹ previous
  • …
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?