ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
J Hepatol.
2017 Sep 01
Wang J, Yu Y, Li G, Shen C, Meng Z, Zheng J, Jia Y, Chen S, Zhang X, Zhu M, Zheng J, Song Z, Wu J, Shao L, Qian P, Mao X, Wang X, Huang Y, Zhao C, Zhang J, Qiu C, Zhang W.
PMID: 28870671 | DOI: 10.1016/j.jhep.2017.08.021
Abstract
BACKGROUND:
In diagnostics, serum hepatitis B virus (HBV)-RNA levels are valuable when the HBV-DNA load in circulation is effectively suppressed by nucleos(t)ide analogue (NUC) therapy. This study aimed to determine the intrahepatic viral replication activity reflected in serum HBV-RNA and whether HBV-RNA contributes to liver histological changes in NUC-treated patients.
METHODS:
A cross-sectional set of serum and liver biopsy samples was obtained from entecavir-treated patients with undetectable levels of serum HBV-DNA. The correlations between HBV-RNA concentration in serum and levels of peripheral and intrahepatic viral replicative forms and histological scores were analyzed. Quasispecies of serum HBV-RNA and intrahepatic viral replicative forms were examined by deep sequencing. HBV-RNA-positive hepatocytes were visualized by in situ hybridization.
RESULTS:
Serum HBV-RNA was detected in 35 of 47 patients (74.47%, 2.33-4.80 log10 copies/mL). These levels correlated not only with the intrahepatic HBV-RNA level and the ratio of intrahepatic HBV-RNA to covalently closed circular DNA (cccDNA), but also with the histological scores for grading and staging. From the view of quasispecies, serum HBV-RNA was more genetically homogenous with contemporaneously sampled intrahepatic HBV-RNA relative to cccDNA pool and dynamically changed over time in consecutive samples. In situ histology study revealed that HBV-RNA-positive hepatocytes were clustered in foci, sporadically distributed across the lobules, and co-localized with hepatitis B surface antigen.
CONCLUSION:
Serum HBV-RNA levels reflect intrahepatic viral transcriptional activity and are associated with liver histopathology in patients receiving NUC therapy. Our study sheds light on the nature of HBV-RNA in the pathogenesis of chronic HBV infection and has implications for the management of chronic hepatitis B during NUC therapy.
LAY SUMMARY:
Serum HBV-RNA levels are indicative of the intrahepatic transcriptional activity of covalently closed circular DNA and are associated with liver histological changes in patients with chronic B hepatitis who are receiving nucleos(t)ide analogue therapy.
J Virol. 2019 Jan 9.
2019 Jan 09
Flerin NC, Bardhi A, Zheng JH, Korom M, Folkvord J, Kovacs C, Benko E, Truong R, Mota T, Connick E, Jones RB, Lynch RM, Goldstein H.
PMID: PMID: 30626677 | DOI: DOI:10.1128/JVI.02051-18
Acta Neuropathol.
2017 Mar 22
Chimelli L, Melo AS, Avvad-Portari E, Wiley CA, Camacho AH, Lopes VS, Machado HN, Andrade CV, Dock DC, Moreira ME, Tovar-Moll F, Oliveira-Szejnfeld PS, Carvalho AC, Ugarte ON, Batista AG, Amorim MM, Melo FO, Ferreira TA, Marinho JR, Azevedo GS, Leal JI, d
PMID: 28332092 | DOI: 10.1007/s00401-017-1699-5
A major concern associated with ZIKV infection is the increased incidence of microcephaly with frequent calcifications in infants born from infected mothers. To date, postmortem analysis of the central nervous system (CNS) in congenital infection is limited to individual reports or small series. We report a comprehensive neuropathological study in ten newborn babies infected with ZIKV during pregnancy, including the spinal cords and dorsal root ganglia (DRG), and also muscle, pituitaries, eye, systemic organs, and placentas. Using in situ hybridization (ISH) and electron microscopy, we investigated the role of direct viral infection in the pathogenesis of the lesions. Nine women had Zika symptoms between the 4th and 18th and one in the 28th gestational week. Two babies were born at 32, one at 34 and 36 weeks each and six at term. The cephalic perimeter was reduced in four, and normal or enlarged in six patients, although the brain weights were lower than expected. All had arthrogryposis, except the patient infected at 28 weeks gestation. We defined three patterns of CNS lesions, with different patterns of destructive, calcification, hypoplasia, and migration disturbances. Ventriculomegaly was severe in the first pattern due to midbrain damage with aqueduct stenosis/distortion. The second pattern had small brains and mild/moderate (ex-vacuo) ventriculomegaly. The third pattern, a well-formed brain with mild calcification, coincided with late infection. The absence of descending fibres resulted in hypoplastic basis pontis, pyramids, and cortico-spinal tracts. Spinal motor cell loss explained the intrauterine akinesia, arthrogryposis, and neurogenic muscle atrophy. DRG, dorsal nerve roots, and columns were normal. Lympho-histiocytic inflammation was mild. ISH showed meningeal, germinal matrix, and neocortical infection, consistent with neural progenitors death leading to proliferation and migration disorders. A secondary ischemic process may explain the destructive lesions. In conclusion, we characterized the destructive and malformative consequences of ZIKV in the nervous system, as reflected in the topography and severity of lesions, anatomic localization of the virus, and timing of infection during gestation. Our findings indicate a developmental vulnerability of the immature CNS, and shed light on possible mechanisms of brain injury of this newly recognized public health threat.
J Neurosci.
2018 May 14
Periyasamy P, Thangaraj A, Guo ML, Hu G, Callen S, Buch S.
PMID: 29760177 | DOI: 10.1523/JNEUROSCI.3474-17.2018
The present study demonstrates HIV-1 Tat-mediated epigenetic downregulation of microglial miR-124 and its association with microglial activation. Exposure of mouse primary microglia isolated from newborn pups of either sex to HIV-1 Tat resulted in decreased expression of primary miR-124-1, primary miR-124-2 as well as the mature miR-124. In parallel, HIV-1 Tat exposure to mouse primary microglial cellsresulted in increased expression of DNA methylation enzymes, such as DNMT1, DNMT3A, and DNMT3B that were also accompanied by increased global DNA methylation. Bisulfite-converted genomic DNA sequencing in the HIV-1 Tat exposed mouse primary microglial cellsfurther confirmed increased DNA methylation of the primary miR-124-1 and primary miR-124-2 promoters. Bioinformatic analyses identified MECP2 as a novel 3'-UTR target of miR-124. This was further validated in mouse primary microglial cells wherein HIV-1 Tat-mediated downregulation of miR-124 resulted in increased expression of MECP2, leading in turn to further repression of miR-124 via the feedback loop. In addition to MECP2, miR-124 also modulated the levels of STAT3 through its binding to the 3'-UTR, leading to microglial activation. Luciferase assays and Ago2 immunoprecipitation determined the direct binding between miR-124 and 3'-UTR of both MECP2 and STAT3. Gene silencing of MECP2 and DNMT1 and overexpression of miR-124 blocked HIV-1 Tat-mediated downregulation of miR-124 and microglial activation. In vitro findings were also confirmed in the basal ganglia of SIV-infected rhesus macaques (both sexes). In summary, our findings demonstrate a novel mechanism of HIV-1 Tat-mediated activation of microglia via downregulation of miR-124, leading ultimately to increased MECP2 and STAT3 signaling.
SIGNIFICANCE STATEMENT
Despite the effectiveness of combination antiretroviral therapy in controlling viremia, the CNS continues to harbor viral reservoirs. The persistence of low-level virus replication leads to the accumulation of early viral proteins including HIV-1 Tat protein. Understanding the epigenetic/molecular mechanism(s) by which viral proteins such as HIV-1 Tat can activate microglia is thus of paramount importance. This study demonstrated HIV-1 Tat-mediated DNA methylation of the miR-124 promoter leads to its downregulation with a concomitant upregulation of the MECP2-STAT3-IL6 resulting in microglial activation. These findings reveal an unexplored epigenetic/molecular mechanism(s) underlying HIV-1 Tat-mediated microglial activation, thereby providing a potential target for the development of therapeutics aimed at ameliorating microglial activation and neuroinflammation in the context of HIV-1 infection.
Virol J.
2018 Jun 15
Zylberberg M, Van Hemert C, Handel CM, DeRisi JL.
PMID: 29903045 | DOI: 10.1186/s12985-018-1008-5
Abstract
BACKGROUND:
Avian keratin disorder (AKD) is an epizootic of debilitating beak deformities, first documented in black-capped chickadees (Poecile atricapillus) in Alaska during the late 1990s. Similar deformities have now been recorded in dozens of species of birds across multiple continents. Despite this, the etiology of AKD has remained elusive, making it difficult to assess the impacts of this disease on wild populations. We previously identified an association between infection with a novel picornavirus, Poecivirus, and AKD in a small cohort of black-capped chickadees.
METHODS:
To test if the association between Poecivirus and AKD holds in a larger study population, we used targeted PCR followed by Sanger sequencing to screen 124 symptomatic and asymptomatic black-capped chickadees for Poecivirus infection. We further compared the efficacy of multiple non-terminal field sampling methods (buccal swabs, cloacal swabs, fecal samples, and blood samples) for Poecivirus screening. Finally, we used both in situ hybridization and a strand-specific expression assay to localize Poecivirus to beak tissue of AKD-positive individuals and to determine if virus is actively replicating in beak tissue.
RESULTS:
Poecivirus was detected in 28/28 (100%) individuals with AKD, but only 9/96 (9.4%) asymptomatic individuals with apparently normal beaks (p < 0.0001). We found that cloacal swabs are the most sensitive of these sample types for detecting Poecivirus in birds with AKD, but that buccal swabs should be combined with cloacal swabs in evaluating the infection status of asymptomatic birds. Finally, we used both in situ hybridization and a strand-specific expression assay to localize Poecivirus to beak tissue of AKD-positive individuals and to provide evidence of active viral replication.
CONCLUSION:
The data presented here show a strong, statistically significant relationship between Poecivirus infection and AKD, and provide evidence that Poecivirus is indeed an avian virus, infecting and actively replicating in beak tissue of AKD-affected BCCH. Taken together, these data corroborate and extend the evidence for a potential causal association between Poecivirus and AKD in the black-capped chickadee. Poecivirus continues to warrant further investigation as a candidate agent of AKD.
Eur Arch Otorhinolaryngol. 2014 Dec 27
Strojan P, Zadnik V, Šifrer R, Lanišnik B, Didanović V, Jereb S, Poljak M, Kocjan BJ, Gale N.
PMID: 25542247
PLoS Pathog. 2014 Oct 30;10(10):e1004467.
Micci L, Alvarez X, Iriele RI, Ortiz AM, Ryan ES, McGary CS, Deleage C, McAtee BB, He T, Apetrei C, Easley K, Pahwa S, Collman RG, Derdeyn CA, Davenport MP, Estes JD, Silvestri G, Lackner AA, Paiardini M.
PMID: 25356757 | DOI: 10.1371/journal.ppat.1004467.
J Vis Exp. Mar 11;(85).
Wang H, Wang MX, Su N, Wang LC, Wu X, Bui 1, Nielsen A, Vo HT, Nguyen N, Luo Y, Ma XJ (2014).
PMID: 24637627doi
Histopathology. May; 60(6):982-91.
Lewis JS Jr1, Ukpo OC, Ma XJ, Flanagan JJ, Luo Y, Thorstad WL, Chernock RD (2012)
PMID: 22360821 | DOI: 10.1111/j.1365-2559.2011.04169.x.
Arch Virol.
2016 Aug 19
Carossino M, Loynachan AT, James MacLachlan N, Drew C, Shuck KM, Timoney PJ, Del Piero F, Balasuriya UB.
PMID: 27541817 | DOI: 10.1007/s00705-016-3014-5
Equine arteritis virus (EAV) is the causative agent of equine viral arteritis, a respiratory and reproductive disease of equids. EAV infection can induce abortion in pregnant mares, fulminant bronchointerstitial pneumonia in foals, and persistent infection in stallions. Here, we developed two RNA in situ hybridization (ISH) assays (conventional and RNAscope® ISH) for the detection of viral RNA in formalin-fixed paraffin-embedded (FFPE) tissues and evaluated and compared their performance with nucleocapsid-specific immunohistochemistry (IHC) and virus isolation (VI; gold standard) techniques. The distribution and cellular localization of EAV RNA and antigen were similar in tissues from aborted equine fetuses. Evaluation of 80 FFPE tissues collected from 16 aborted fetuses showed that the conventional RNA ISH assay had a significantly lower sensitivity than the RNAscope® and IHC assays, whereas there was no difference between the latter two assays. The use of oligonucleotide probes along with a signal amplification system (RNAscope®) can enhance detection of EAV RNA in FFPE tissues, with sensitivity comparable to that of IHC. Most importantly, these assays provide important tools with which to investigate the mechanisms of EAV pathogenesis.
Head Neck. 2018 Dec 14.
2018 Dec 14
Ruuskanen M, Irjala H, Minn H, Vahlberg T, Randen-Brady R, Hagström J, Syrjänen S, Leivo I.
PMID: 30549170 | DOI: 10.1002/hed.25450
Mediators of Inflammation
2015 Nov 15
Christensen AB, Dige A, Vad-Nielsen J, Brinkmann CR, Bendix M, Østergaard L, Tolstrup M, Søgaard OS, Rasmussen TA, Nyengaard JR, Agnholt J, Denton PW.
PMID: - | DOI: http://dx.doi.org/10.1155/2015/120605
Intestinal CD4+ T cell depletion is rapid and profound during early HIV-1 infection. This leads to a compromised mucosal barrier that prompts chronic systemic inflammation. The preferential loss of intestinal T helper 17 (Th17) cells in HIV-1 disease is a driver of the damage within the mucosal barrier and of disease progression. Thus, understanding the effects of new therapeutic strategies in the intestines has high priority. Histone deacetylase (HDAC) inhibitors (e.g., panobinostat) are actively under investigation as potential latency reversing agents in HIV eradication studies. These drugs have broad effects that go beyond reactivating virus, including modulation of immune pathways. We examined colonic biopsies from ART suppressed HIV-1 infected individuals (clinicaltrials.gov: NCT01680094) for the effects of panobinostat on intestinal T cell activation and on inflammatory cytokine production. We compared biopsy samples that were collected before and during oral panobinostat treatment and observed that panobinostat had a clear biological impact in this anatomical compartment. Specifically, we observed a decrease in CD69+ intestinal lamina propria T cell frequency and increased IL-17A mRNA expression in the intestinal epithelium. These results suggest that panobinostat therapy may influence the restoration of mucosal barrier function in these patients.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com