Nakayama, T;Lee, IT;Jiang, S;Matter, MS;Yan, CH;Overdevest, JB;Wu, CT;Goltsev, Y;Shih, LC;Liao, CK;Zhu, B;Bai, Y;Lidsky, P;Xiao, Y;Zarabanda, D;Yang, A;Easwaran, M;Schürch, CM;Chu, P;Chen, H;Stalder, AK;McIlwain, DR;Borchard, NA;Gall, PA;Dholakia, SS;Le, W;Xu, L;Tai, CJ;Yeh, TH;Erickson-Direnzo, E;Duran, JM;Mertz, KD;Hwang, PH;Haslbauer, JD;Jackson, PK;Menter, T;Andino, R;Canoll, PD;DeConde, AS;Patel, ZM;Tzankov, A;Nolan, GP;Nayak, JV;
PMID: 34604819 | DOI: 10.1016/j.xcrm.2021.100421
Understanding viral tropism is an essential step toward reducing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, decreasing mortality from coronavirus disease 2019 (COVID-19) and limiting opportunities for mutant strains to arise. Currently, little is known about the extent to which distinct tissue sites in the human head and neck region and proximal respiratory tract selectively permit SARS-CoV-2 infection and replication. In this translational study, we discover key variabilities in expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), essential SARS-CoV-2 entry factors, among the mucosal tissues of the human proximal airways. We show that SARS-CoV-2 infection is present in all examined head and neck tissues, with a notable tropism for the nasal cavity and tracheal mucosa. Finally, we uncover an association between smoking and higher SARS-CoV-2 viral infection in the human proximal airway, which may explain the increased susceptibility of smokers to developing severe COVID-19. This is at least partially explained by differences in interferon (IFN)-β1 levels between smokers and non-smokers.
Prompetchara, E;Ketloy, C;Alameh, MG;Tharakhet, K;Kaewpang, P;Yostrerat, N;Pitakpolrat, P;Buranapraditkun, S;Manopwisedjaroen, S;Thitithanyanont, A;Jongkaewwattana, A;Hunsawong, T;Im-Erbsin, R;Reed, M;Wijagkanalan, W;Patarakul, K;Techawiwattanaboon, T;Palaga, T;Lam, K;Heyes, J;Weissman, D;Ruxrungtham, K;
PMID: 37085495 | DOI: 10.1038/s41467-023-37795-0
Establishment of an mRNA vaccine platform in low- and middle-income countries (LMICs) is important to enhance vaccine accessibility and ensure future pandemic preparedness. Here, we describe the preclinical studies of "ChulaCov19", a SARS-CoV-2 mRNA encoding prefusion-unstabilized ectodomain spike protein encapsulated in lipid nanoparticles (LNP). In female BALB/c mice, ChulaCov19 at 0.2, 1, 10, and 30 μg elicits robust neutralizing antibody (NAb) and T cell responses in a dose-dependent relationship. The geometric mean titers (GMTs) of NAb against wild-type (WT, Wuhan-Hu1) virus are 1,280, 11,762, 54,047, and 62,084, respectively. Higher doses induce better cross-NAb against Delta (B.1.617.2) and Omicron (BA.1 and BA.4/5) variants. This elicited immunogenicity is significantly higher than those induced by homologous CoronaVac or AZD1222 vaccination. In a heterologous prime-boost study, ChulaCov19 booster dose generates a 7-fold increase of NAb against Wuhan-Hu1 WT virus and also significantly increases NAb response against Omicron (BA.1 and BA.4/5) when compared to homologous CoronaVac or AZD1222 vaccination. Challenge studies show that ChulaCov19 protects human-ACE-2-expressing female mice from COVID-19 symptoms, prevents viremia and significantly reduces tissue viral load. Moreover, anamnestic NAb response is undetectable in challenge animals. ChulaCov19 is therefore a promising mRNA vaccine candidate either as a primary or boost vaccination and has entered clinical development.
Zhang, C;Wei, B;Liu, Z;Yao, W;Li, Y;Lu, J;Ge, C;Yu, X;Li, D;Zhu, Y;Shang, C;Jin, N;Li, X;
PMID: 36721152 | DOI: 10.1186/s12985-023-01971-x
Coronavirus disease 2019 is a global pandemic caused by SARS-CoV-2. The emergence of its variant strains has posed a considerable challenge to clinical treatment. Therefore, drugs capable of inhibiting SARS-CoV-2 infection, regardless of virus variations, are in urgently need. Our results showed that the endosomal acidification inhibitor, Bafilomycin A1 (Baf-A1), had an inhibitory effect on the viral RNA synthesis of SARS-CoV-2, and its Beta and Delta variants at the concentration of 500 nM. Moreover, the human lung xenograft mouse model was used to investigate the anti-SARS-CoV-2 effect of Baf-A1. It was found that Baf-A1 significantly inhibited SARS-CoV-2 replication in the human lung xenografts by in situ hybridization and RT-PCR assays. Histopathological examination showed that Baf-A1 alleviated SARS-CoV-2-induced diffuse inflammatory infiltration of granulocytes and macrophages and alveolar endothelial cell death in human lung xenografts. In addition, immunohistochemistry analysis indicated that Baf-A1 decreased inflammatory exudation and infiltration in SARS-CoV-2-infected human lung xenografts. Therefore, Baf-A1 may be a candidate drug for SARS-CoV-2 treatment.
Dada, LA;Welch, LC;Magnani, ND;Ren, Z;Han, H;Brazee, PL;Celli, D;Flozak, AS;Weng, A;Herrerias, MM;Kryvenko, V;Vadász, I;Runyan, CE;Abdala-Valencia, H;Shigemura, M;Casalino-Matsuda, SM;Misharin, AV;Budinger, GRS;Gottardi, CJ;Sznajder, JI;
PMID: 36626234 | DOI: 10.1172/jci.insight.159331
Persistent symptoms and radiographic abnormalities suggestive of failed lung repair are among the most common symptoms in patients with COVID-19 after hospital discharge. In mechanically ventilated patients with ARDS secondary to SARS-CoV-2 pneumonia, low tidal volumes to reduce ventilator-induced lung injury necessarily elevate blood CO2 levels, often leading to hypercapnia. The role of hypercapnia on lung repair after injury is not completely understood. Here, using a mouse model of hypercapnia exposure, cell lineage-tracing, spatial transcriptomics and 3D-cultures, we show that hypercapnia limits β-catenin signaling in AT2 cells, leading to their reduced proliferative capacity. Hypercapnia alters expression of major Wnts in PDGFRα+-fibroblasts from those maintaining AT2 progenitor activity towards those that antagonize β-catenin signaling thereby limiting progenitor function. Constitutive activation of β-catenin signaling in AT2 cells or treatment of organoid cultures with recombinant WNT3A protein bypasses the inhibitory effects of hypercapnia. Inhibition of AT2 proliferation in hypercapnic patients may contribute to impaired lung repair after injury, preventing sealing of the epithelial barrier, increasing lung flooding, ventilator dependency and mortality. .
Disease models & mechanisms
Jeong, H;Lee, YW;Park, IH;Noh, H;Kim, SH;Kim, J;Jeon, D;Jang, HJ;Oh, J;On, D;Uhm, C;Cho, K;Oh, H;Yoon, S;Seo, JS;Kim, JJ;Seok, SH;Lee, YJ;Hong, SM;An, SH;Kim, SY;Kim, YB;Hwang, JY;Lee, HJ;Kim, HB;Jeong, DG;Song, D;Song, M;Park, MS;Choi, KS;Park, JW;Seo, JY;Yun, JW;Shin, JS;Lee, HY;Nam, KT;Seong, JK;
PMID: 36222118 | DOI: 10.1242/dmm.049632
SARS-CoV-2, the etiological agent of COVID-19, causes life-threatening disease. This novel coronavirus enters host cells via the respiratory tract, promoting the formation of severe pulmonary lesions and systemic disease. Few animal models can simulate the clinical signs and pathology of COVID-19 patients. Diverse preclinical studies using K18-hACE2 mice and Syrian golden hamsters, which are highly permissive to SARS-CoV-2 in the respiratory tract, are emerging; however, the systemic pathogenesis and cellular tropism of these models remain obscure. We intranasally infected K18-hACE2 mice and Syrian golden hamsters with SARS-CoV-2, and compared the clinical features, pathogenesis, cellular tropism, and infiltrated immune-cell subsets. In K18-hACE2 mice, SARS-CoV-2 persistently replicated in alveolar cells and caused pulmonary and extra-pulmonary disease, resulting in fatal outcomes. Conversely, in Syrian golden hamsters, transient SARS-CoV-2 infection in bronchial cells caused reversible pulmonary disease, without mortality. Our findings provide comprehensive insights into the pathogenic spectrum of COVID-19 using pre-clinical models.
Yu, P;Deng, W;Bao, L;Qu, Y;Xu, Y;Zhao, W;Han, Y;Qin, C;
PMID: 35094625 | DOI: 10.1177/03009858211071016
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes severe viral pneumonia and is associated with a high fatality rate. A substantial proportion of patients infected by SARS-CoV-2 suffer from mild hyposmia to complete loss of olfactory function, resulting in anosmia. However, the pathogenesis of the olfactory dysfunction and comparative pathology of upper respiratory infections with SARS-CoV-2 are unknown. We describe the histopathological, immunohistochemical, and in situ hybridization findings from rodent models of SARS-CoV-2 infection. The main histopathological findings in the olfactory epithelia of K8-hACE2 Tg mice, hACE2 Tg mice, and hamsters were varying degrees of inflammatory lesions, including disordered arrangement, necrosis, exfoliation, and macrophage infiltration of the olfactory epithelia, and inflammatory exudation. On the basis of these observations, the nasal epithelia of these rodent models appeared to develop moderate, mild, and severe rhinitis, respectively. Correspondingly, SARS-CoV-2 viral RNA and antigen were mainly identified in the olfactory epithelia and lamina propria. Moreover, viral RNA was abundant in the cerebrum of K18-hACE2 Tg mice, including the olfactory bulb. The K8-hACE2 Tg mouse, hACE2 Tg mouse, and hamster models could be used to investigate the pathology of SARS-CoV-2 infection in the upper respiratory tract and central nervous system. These models could help to provide a better understanding of the pathogenic process of this virus and to develop effective medications and prophylactic treatments.
Griffin, B;Warner, B;Chan, M;Valcourt, E;Tailor, N;Banadyga, L;Leung, A;He, S;Boese, A;Audet, J;Cao, W;Moffat, E;Garnett, L;Tierney, K;Tran, K;Albietz, A;Manguiat, K;Soule, G;Bello, A;Vendramelli, R;Lin, J;Deschambault, Y;Zhu, W;Wood, H;Mubareka, S;Safronetz, D;Strong, J;Embury-Hyatt, C;Kobasa, D;
| DOI: 10.1016/j.isci.2021.103530
The golden hamster model of SARS-CoV-2 infection recapitulates key characteristics of COVID-19. In this work we examined the influence of the route of exposure, sex, and age on SARS-CoV-2 pathogenesis in hamsters. We report that delivery of SARS-CoV-2 by a low versus high volume intranasal or intragastric route results in comparable viral titers in the lung and viral shedding. However, low-volume intranasal exposure results in milder weight loss while intragastric exposure leads to a diminished capacity to regain body weight. Male hamsters, and particularly older male hamsters, display an impaired capacity to recover from illness and delayed viral clearance. These factors were found to influence the nature of the host inflammatory cytokine response, but had a minimal effect on the quality and durability of the humoral immune response and susceptibility to re-infection. These data further elucidate key factors that impact pre-clinical challenge studies carried out in the hamster model of COVID-19.
The American journal of pathology
Mulka, KR;Beck, SE;Solis, CV;Johanson, AL;Queen, SE;McCarron, ME;Richardson, MR;Zhou, R;Marinho, P;Jedlicka, A;Guerrero-Martin, S;Shirk, EN;Braxton, AM;Brockhurst, J;Creisher, PS;Dhakal, S;Brayton, CF;Veenhuis, RT;Metcalf Pate, KA;Karakousis, PC;Zahnow, CA;Klein, SL;Jain, SK;Tarwater, PM;Pekosz, AS;Villano, JS;Mankowski, JL;Johns Hopkins COVID-19 Hamster Study Group, ;
PMID: 34767812 | DOI: 10.1016/j.ajpath.2021.10.009
To catalyze SARS-CoV-2 research including development of novel interventive and preventive strategies, we characterized progression of disease in depth in a robust COVID-19 animal model. In this model, male and female golden Syrian hamsters were inoculated intranasally with SARS-CoV-2 USA-WA1/2020. Groups of inoculated and mock-inoculated uninfected control animals were euthanized at 2, 4, 7, 14 and 28 days post-inoculation to track multiple clinical, pathology, virology, and immunology outcomes. SARS-CoV-2-inoculated animals consistently lost body weight during the first week of infection, had higher lung weights at terminal timepoints, and developed lung consolidation per histopathology and quantitative image analysis measurements. High levels of infectious virus and viral RNA were reliably present in the respiratory tract at days 2 and 4 post-inoculation, corresponding with widespread necrosis and inflammation. At day 7, when infectious virus was rare, interstitial and alveolar macrophage infiltrates and marked reparative epithelial responses (type II hyperplasia) dominated in the lung. These lesions resolved over time, with only residual epithelial repair evident by day 28 post-inoculation. The use of quantitative approaches to measure cellular and morphologic alterations in the lung provides valuable outcome measures for developing therapeutic and preventive interventions for COVID-19 using the hamster COVID-19 model.
Mao, Q;Chu, S;Shapiro, S;Young, L;Russo, M;De Paepe, ME;
PMID: 34929459 | DOI: 10.1016/j.placenta.2021.12.002
Recent evidence supports the - rare - occurrence of vertical transplacental SARS-CoV-2 transmission. We previously determined that placental expression of angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 receptor, and associated viral cell entry regulators is upregulated by hypoxia. In the present study, we utilized a clinically relevant model of SARS-CoV-2-associated chronic histiocytic intervillositis/massive perivillous fibrin deposition (CHIV/MPFVD) to test the hypothesis that placental hypoxia may facilitate placental SARS-CoV-2 infection.We performed a comparative immunohistochemical and/or RNAscope in-situ hybridization analysis of carbonic anhydrase IX (CAIX, hypoxia marker), ACE2 and SARS-CoV-2 expression in free-floating versus fibrin-encased chorionic villi in a 20-weeks' gestation placenta with SARS-CoV-2-associated CHIV/MPVFD.The levels of CAIX and ACE2 immunoreactivity were significantly higher in trophoblastic cells of fibrin-encased villi than in those of free-floating villi, consistent with hypoxia-induced ACE2 upregulation. SARS-CoV-2 showed a similar preferential localization to trophoblastic cells of fibrin-encased villi.The localization of SARS-CoV-2 to hypoxic, fibrin-encased villi in this placenta with CHIV/MPVFD suggests placental infection and, therefore, transplacental SARS-CoV-2 transmission may be promoted by hypoxic conditions, mediated by ACE2 and similar hypoxia-sensitive viral cell entry mechanisms. Understanding of a causative link between placental hypoxia and SARS-CoV-2 transmittability may potentially lead to the development of alternative strategies for prevention of intrauterine COVID-19 transmission.
McDonald, JT;Enguita, FJ;Taylor, D;Griffin, RJ;Priebe, W;Emmett, MR;Sajadi, MM;Harris, AD;Clement, J;Dybas, JM;Aykin-Burns, N;Guarnieri, JW;Singh, LN;Grabham, P;Baylin, SB;Yousey, A;Pearson, AN;Corry, PM;Saravia-Butler, A;Aunins, TR;Sharma, S;Nagpal, P;Meydan, C;Foox, J;Mozsary, C;Cerqueira, B;Zaksas, V;Singh, U;Wurtele, ES;Costes, SV;Davanzo, GG;Galeano, D;Paccanaro, A;Meinig, SL;Hagan, RS;Bowman, NM;UNC COVID-19 Pathobiology Consortium, ;Wolfgang, MC;Altinok, S;Sapoval, N;Treangen, TJ;Moraes-Vieira, PM;Vanderburg, C;Wallace, DC;Schisler, JC;Mason, CE;Chatterjee, A;Meller, R;Beheshti, A;
PMID: 34624208 | DOI: 10.1016/j.celrep.2021.109839
MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provide an exciting avenue toward antiviral therapeutics. From patient transcriptomic data, we determined that a circulating miRNA, miR-2392, is directly involved with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia, as well as promoting many symptoms associated with coronavirus disease 2019 (COVID-19) infection. We demonstrate that miR-2392 is present in the blood and urine of patients positive for COVID-19 but is not present in patients negative for COVID-19. These findings indicate the potential for developing a minimally invasive COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we design a miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters, and may potentially inhibit a COVID-19 disease state in humans.
A single intranasal or intramuscular immunization with chimpanzee adenovirus vectored SARS-CoV-2 vaccine protects against pneumonia in hamsters
Bricker, T;Darling, T;Hassan, A;Harastani, H;Soung, A;Jiang, X;Dai, Y;Zhao, H;Adams, L;Holtzman, M;Bailey, A;Case, J;Fremont, D;Klein, R;Diamond, M;Boon, A;
| DOI: 10.1016/j.celrep.2021.109400
The development of an effective vaccine against SARS-CoV-2, the etiologic agent of COVID-19, is a global priority. Here, we compared the protective capacity of intranasal and intramuscular delivery of a chimpanzee adenovirus-vectored vaccine encoding a pre-fusion stabilized spike protein (ChAd-SARS-CoV-2-S) in Golden Syrian hamsters. While immunization with ChAd-SARS-CoV-2-S induced robust spike protein specific antibodies capable of neutralizing the virus, antibody levels in serum were higher in hamsters vaccinated by an intranasal compared to intramuscular route. Accordingly, against challenge with SARS-CoV-2, ChAd-SARS-CoV-2-S immunized hamsters were protected against less weight loss and had reduced viral infection in nasal swabs and lungs, and reduced pathology and inflammatory gene expression in the lungs, compared to ChAd-Control immunized hamsters. Intranasal immunization with ChAd-SARS-CoV-2-S provided superior protection against SARS-CoV-2 infection and inflammation in the upper respiratory tract. These findings support intranasal administration of the ChAd-SARS-CoV-2-S candidate vaccine to prevent SARS-CoV-2 infection, disease, and possibly transmission.
Rapid endotheliitis and vascular damage characterize SARS-CoV-2 infection in a human lung-on-chip model
Thacker, VV;Sharma, K;Dhar, N;Mancini, GF;Sordet-Dessimoz, J;McKinney, JD;
PMID: 33908688 | DOI: 10.15252/embr.202152744
Severe cases of SARS-CoV-2 infection are characterized by hypercoagulopathies and systemic endotheliitis of the lung microvasculature. The dynamics of vascular damage, and whether it is a direct consequence of endothelial infection or an indirect consequence of an immune cell-mediated cytokine storm remain unknown. Using a vascularized lung-on-chip model, we find that infection of alveolar epithelial cells leads to limited apical release of virions, consistent with reports of monoculture infection. However, viral RNA and proteins are rapidly detected in underlying endothelial cells, which are themselves refractory to apical infection in monocultures. Although endothelial infection is unproductive, it leads to the formation of cell clusters with low CD31 expression, a progressive loss of barrier integrity and a pro-coagulatory microenvironment. Viral RNA persists in individual cells generating an inflammatory response, which is transient in epithelial cells but persistent in endothelial cells and typified by IL-6 secretion even in the absence of immune cells. Inhibition of IL-6 signalling with tocilizumab reduces but does not prevent loss of barrier integrity. SARS-CoV-2-mediated endothelial cell damage thus occurs independently of cytokine storm.