Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (232)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • SARS-CoV-2 (113) Apply SARS-CoV-2 filter
  • V-nCoV2019-S (30) Apply V-nCoV2019-S filter
  • SARS-CoV-2  (13) Apply SARS-CoV-2  filter
  • Ace2 (10) Apply Ace2 filter
  • TBD (8) Apply TBD filter
  • V-nCoV2019-orf1ab-sense (5) Apply V-nCoV2019-orf1ab-sense filter
  • SARS-CoV-2 S (5) Apply SARS-CoV-2 S filter
  • CD68 (4) Apply CD68 filter
  • TMPRSS2 (4) Apply TMPRSS2 filter
  • V-nCoV2019-S-sense (4) Apply V-nCoV2019-S-sense filter
  • SARS-CoV-2 spike (4) Apply SARS-CoV-2 spike filter
  • Il-6 (3) Apply Il-6 filter
  • V-nCoV-2019-S (3) Apply V-nCoV-2019-S filter
  • Rbfox3 (2) Apply Rbfox3 filter
  • IL1B (2) Apply IL1B filter
  • IL6 (2) Apply IL6 filter
  • Ifnb1 (2) Apply Ifnb1 filter
  • Sftpc (2) Apply Sftpc filter
  • nCoV2019-S (2) Apply nCoV2019-S filter
  • nCoV2019-S-sense (2) Apply nCoV2019-S-sense filter
  • hACE2 (2) Apply hACE2 filter
  • Cxc19 (2) Apply Cxc19 filter
  • SARS‐CoV‐2 (2) Apply SARS‐CoV‐2 filter
  • SARS- CoV-2 (2) Apply SARS- CoV-2 filter
  • Axin2 (1) Apply Axin2 filter
  • CCL5 (1) Apply CCL5 filter
  • C1qa (1) Apply C1qa filter
  • CFB (1) Apply CFB filter
  • Wnt5a (1) Apply Wnt5a filter
  • KRT18 (1) Apply KRT18 filter
  • Ccl2 (1) Apply Ccl2 filter
  • CXCL10 (1) Apply CXCL10 filter
  • ADCY3 (1) Apply ADCY3 filter
  • Tnf (1) Apply Tnf filter
  • EPCAM (1) Apply EPCAM filter
  • FLT1 (1) Apply FLT1 filter
  • GFAP (1) Apply GFAP filter
  • Omp (1) Apply Omp filter
  • Casp1 (1) Apply Casp1 filter
  • Mpo (1) Apply Mpo filter
  • KIT (1) Apply KIT filter
  • LCN2 (1) Apply LCN2 filter
  • PECAM1 (1) Apply PECAM1 filter
  • MCAM (1) Apply MCAM filter
  • PDGFRA (1) Apply PDGFRA filter
  • PPIB (1) Apply PPIB filter
  • 16SrRNA (1) Apply 16SrRNA filter
  • Cd163 (1) Apply Cd163 filter
  • VWF (1) Apply VWF filter
  • WNT2 (1) Apply WNT2 filter

Product

  • RNAscope (50) Apply RNAscope filter
  • RNAscope 2.5 HD Red assay (48) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent Assay (28) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Brown Assay (24) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (15) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 LS Assay (15) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Duplex (5) Apply RNAscope 2.5 HD Duplex filter
  • TBD (5) Apply TBD filter
  • RNAscope Multiplex Fluorescent v2 (4) Apply RNAscope Multiplex Fluorescent v2 filter
  • BASEscope Assay RED (2) Apply BASEscope Assay RED filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Fluorescent Multiplex Assay (2) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope ISH Probe High Risk HPV (1) Apply RNAscope ISH Probe High Risk HPV filter
  • RNAscope Multiplex fluorescent reagent kit v2 (1) Apply RNAscope Multiplex fluorescent reagent kit v2 filter
  • RNAscope Target Retrieval Reagents (1) Apply RNAscope Target Retrieval Reagents filter

Research area

  • (-) Remove Covid filter Covid (232)
  • Infectious (82) Apply Infectious filter
  • Inflammation (21) Apply Inflammation filter
  • Immunotherapy (11) Apply Immunotherapy filter
  • Neuroscience (9) Apply Neuroscience filter
  • Reproduction (9) Apply Reproduction filter
  • Infectious Disease (6) Apply Infectious Disease filter
  • Vaccine (5) Apply Vaccine filter
  • Vaccines (5) Apply Vaccines filter
  • Lung (4) Apply Lung filter
  • Neuroinflammation (3) Apply Neuroinflammation filter
  • Alzheimer's Disease (2) Apply Alzheimer's Disease filter
  • Heart (2) Apply Heart filter
  • Heart Disease (2) Apply Heart Disease filter
  • Long Covid (2) Apply Long Covid filter
  • Other: Methods (2) Apply Other: Methods filter
  • Adrenal (1) Apply Adrenal filter
  • Bioinformatics (1) Apply Bioinformatics filter
  • Cancer (1) Apply Cancer filter
  • chimeric VLP-based Vaccine (1) Apply chimeric VLP-based Vaccine filter
  • COVID-19-associated pulmonary aspergillosis (1) Apply COVID-19-associated pulmonary aspergillosis filter
  • Equine coronavirus (1) Apply Equine coronavirus filter
  • Fibrosis (1) Apply Fibrosis filter
  • Immunology (1) Apply Immunology filter
  • Immunothearpy (1) Apply Immunothearpy filter
  • Infammation (1) Apply Infammation filter
  • Infectious Disease: influenza-associated pulmonary aspergillosis (1) Apply Infectious Disease: influenza-associated pulmonary aspergillosis filter
  • Infectious Disease: influenza-associated pulmonary aspergillosis (1) Apply Infectious Disease: influenza-associated pulmonary aspergillosis filter
  • Infectiouse Disease: Flu (1) Apply Infectiouse Disease: Flu filter
  • Influenza (1) Apply Influenza filter
  • Long-Covid (1) Apply Long-Covid filter
  • Lung fibrosis (1) Apply Lung fibrosis filter
  • Organ transplant (1) Apply Organ transplant filter
  • Other: Lung (1) Apply Other: Lung filter
  • pharmacotherapy (1) Apply pharmacotherapy filter
  • Pulmonary disease (1) Apply Pulmonary disease filter
  • Reproductive Biology (1) Apply Reproductive Biology filter
  • Respiratory Disease (1) Apply Respiratory Disease filter
  • Sex Differences (1) Apply Sex Differences filter
  • Thyroid (1) Apply Thyroid filter
  • Tuberculosis (1) Apply Tuberculosis filter
  • Vaccine-associated enhanced respiratory disease (1) Apply Vaccine-associated enhanced respiratory disease filter
  • Vaccines Associated Hepatitis (1) Apply Vaccines Associated Hepatitis filter

Category

  • Publications (232) Apply Publications filter
Evaluation of a panel of therapeutic antibody clinical candidates for efficacy against SARS-CoV-2 in Syrian hamsters

Antiviral research

2023 Mar 30

Cong, Y;Mucker, EM;Perry, DL;Dixit, S;Kollins, E;Byrum, R;Huzella, L;Kim, R;Josleyn, M;Kwilas, S;Stefan, C;Shoemaker, CJ;Koehler, J;Coyne, S;Delp, K;Liang, J;Drawbaugh, D;Hischak, A;Hart, R;Postnikova, E;Vaughan, N;Asher, J;St Claire, M;Hanson, J;Schmaljohn, C;Eakin, AE;Hooper, JW;Holbrook, MR;
PMID: 37003305 | DOI: 10.1016/j.antiviral.2023.105589

The COVID-19 pandemic spurred the rapid development of a range of therapeutic antibody treatments. As part of the US government's COVID-19 therapeutic response, a research team was assembled to support assay and animal model development to assess activity for therapeutics candidates against SARS-CoV-2. Candidate treatments included monoclonal antibodies, antibody cocktails, and products derived from blood donated by convalescent patients. Sixteen candidate antibody products were obtained directly from manufacturers and evaluated for neutralization activity against the WA-01 isolate of SARS-CoV-2. Products were further tested in the Syrian hamster model using prophylactic (-24 h) or therapeutic (+8 h) treatment approaches relative to intranasal SARS-CoV-2 exposure. In vivo assessments included daily clinical scores and body weights. Viral RNA and viable virus titers were quantified in serum and lung tissue with histopathology performed at 3d and 7d post-virus-exposure. Sham-treated, virus-exposed hamsters showed consistent clinical signs with concomitant weight loss and had detectable viral RNA and viable virus in lung tissue. Histopathologically, interstitial pneumonia with consolidation was present. Therapeutic efficacy was identified in treated hamsters by the absence or diminution of clinical scores, body weight loss, viral loads, and improved semiquantitative lung histopathology scores. This work serves as a model for the rapid, systematic in vitro and in vivo assessment of the efficacy of candidate therapeutics at various stages of clinical development. These efforts provided preclinical efficacy data for therapeutic candidates. Furthermore, these studies were invaluable for the phenotypic characterization of SARS CoV-2 disease in hamsters and of utility to the broader scientific community.
SARS-CoV-2 infection and persistence in the human body and brain at autopsy

Nature

2022 Dec 01

Stein, SR;Ramelli, SC;Grazioli, A;Chung, JY;Singh, M;Yinda, CK;Winkler, CW;Sun, J;Dickey, JM;Ylaya, K;Ko, SH;Platt, AP;Burbelo, PD;Quezado, M;Pittaluga, S;Purcell, M;Munster, VJ;Belinky, F;Ramos-Benitez, MJ;Boritz, EA;Lach, IA;Herr, DL;Rabin, J;Saharia, KK;Madathil, RJ;Tabatabai, A;Soherwardi, S;McCurdy, MT;NIH COVID-19 Autopsy Consortium, ;Peterson, KE;Cohen, JI;de Wit, E;Vannella, KM;Hewitt, SM;Kleiner, DE;Chertow, DS;
PMID: 36517603 | DOI: 10.1038/s41586-022-05542-y

Coronavirus disease 2019 (COVID-19) is known to cause multi-organ dysfunction1-3 during acute infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with some patients experiencing prolonged symptoms, termed post-acute sequelae of SARS-CoV-2 (refs. 4,5). However, the burden of infection outside the respiratory tract and time to viral clearance are not well characterized, particularly in the brain3,6-14. Here we carried out complete autopsies on 44 patients who died with COVID-19, with extensive sampling of the central nervous system in 11 of these patients, to map and quantify the distribution, replication and cell-type specificity of SARS-CoV-2 across the human body, including the brain, from acute infection to more than seven months following symptom onset. We show that SARS-CoV-2 is widely distributed, predominantly among patients who died with severe COVID-19, and that virus replication is present in multiple respiratory and non-respiratory tissues, including the brain, early in infection. Further, we detected persistent SARS-CoV-2 RNA in multiple anatomic sites, including throughout the brain, as late as 230 days following symptom onset in one case. Despite extensive distribution of SARS-CoV-2 RNA throughout the body, we observed little evidence of inflammation or direct viral cytopathology outside the respiratory tract. Our data indicate that in some patients SARS-CoV-2 can cause systemic infection and persist in the body for months.
Diffuse alveolar damage patterns reflect the immunological and molecular heterogeneity in fatal COVID-19

EBioMedicine

2022 Aug 23

Erjefält, JS;de Souza Xavier Costa, N;Jönsson, J;Cozzolino, O;Dantas, KC;Clausson, CM;Siddhuraj, P;Lindö, C;Alyamani, M;Lombardi, SCFS;Mendroni Júnior, A;Antonangelo, L;Faria, CS;Duarte-Neto, AN;de Almeida Monteiro, RA;Rebello Pinho, JR;Gomes-Gouvêa, MS;Verciano Pereira, R;Monteiro, JS;Setubal, JC;de Oliveira, EP;Theodoro Filho, J;Sanden, C;Orengo, JM;Sleeman, MA;da Silva, LFF;Saldiva, PHN;Dolhnikoff, M;Mauad, T;
PMID: 36027872 | DOI: 10.1016/j.ebiom.2022.104229

Severe COVID-19 lung disease exhibits a high degree of spatial and temporal heterogeneity, with different histological features coexisting within a single individual. It is important to capture the disease complexity to support patient management and treatment strategies. We provide spatially decoded analyses on the immunopathology of diffuse alveolar damage (DAD) patterns and factors that modulate immune and structural changes in fatal COVID-19.We spatially quantified the immune and structural cells in exudative, intermediate, and advanced DAD through multiplex immunohistochemistry in autopsy lung tissue of 18 COVID-19 patients. Cytokine profiling, viral, bacteria, and fungi detection, and transcriptome analyses were performed.Spatial DAD progression was associated with expansion of immune cells, macrophages, CD8+ T cells, fibroblasts, and (lymph)angiogenesis. Viral load correlated positively with exudative DAD and negatively with disease/hospital length. In all cases, enteric bacteria were isolated, and Candida parapsilosis in eight cases. Cytokines correlated mainly with macrophages and CD8+T cells. Pro-coagulation and acute repair were enriched pathways in exudative DAD whereas intermediate/advanced DAD had a molecular profile of elevated humoral and innate immune responses and extracellular matrix production.Unraveling the spatial and molecular immunopathology of COVID-19 cases exposes the responses to SARS-CoV-2-induced exudative DAD and subsequent immune-modulatory and remodeling changes in proliferative/advanced DAD that occur side-by-side together with secondary infections in the lungs. These complex features have important implications for disease management and the development of novel treatments.CNPq, Bill and Melinda Gates Foundation, HC-Convida, FAPESP, Regeneron Pharmaceuticals, and the Swedish Heart & Lung Foundation.
Pathological involvement of placenta in COVID-19: a systematic review

Le infezioni in medicina

2022 Jun 01

Motwani, R;Deshmukh, V;Kumar, A;Kumari, C;Raza, K;Krishna, H;
PMID: 35693050 | DOI: 10.53854/liim-3002-1

The mammalian placenta, which is responsible for bonding between the mother and the fetus, is one of the first organs to develop. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection has caused a great threat to public health and affected almost all the organs including the placenta. Owing to limited available data on vertical transmission and pathological changes in the placenta of SARS-CoV-2 positive patients, we aim to review and summarize histopathological and ultrastructural changes in the placental tissue following SARS-CoV-2 infection. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2009 guidelines were used for review writing. Multiple studies have reported significant pathological changes in the placental tissue of SARS-CoV-2 positive mothers. On the other hand, some studies have demonstrated either no or very little involvement of the placental tissue. The most common pathological changes reported are fetal and maternal vascular malformation, villitis of unknown etiology, thrombus formation in the intervillous space and sub-chorionic space, and chorangiosis. Reports on vertical transmission are less in number. The observations of this review present a strong base for the pathological involvement of the placenta in SARS-CoV-2 infected mothers. However, a smaller number of original studies have been done until now, and most of them have small sample sizes and lack matched control groups, which are the big limitations for drawing an effective conclusion at this stage. Antenatal care can be improved by a better understanding of the correlation between maternal SARS-CoV-2 infection and placental pathology in COVID-19.
Characterization of COVID-19-associated cardiac injury: evidence for a multifactorial disease in an autopsy cohort

Laboratory investigation; a journal of technical methods and pathology

2022 Apr 18

Hanson, PJ;Liu-Fei, F;Ng, C;Minato, TA;Lai, C;Hossain, AR;Chan, R;Grewal, B;Rai, H;Hirota, J;Anderson, DR;Radio, SJ;McManus, BM;
PMID: 35437316 | DOI: 10.1038/s41374-022-00783-x

As the coronavirus disease 2019 (COVID-19) pandemic evolves, much evidence implicates the heart as a critical target of injury in patients. The mechanism(s) of cardiac involvement has not been fully elucidated, although evidence of direct virus-mediated injury, thromboembolism with ischemic complications, and cytokine storm has been reported. We examined suggested mechanisms of COVID-19-associated heart failure in 21 COVID-19-positive decedents, obtained through standard autopsy procedure, compared to clinically matched controls and patients with various etiologies of viral myocarditis. We developed a custom tissue microarray using regions of pathological interest and interrogated tissues via immunohistochemistry and in situ hybridization. Severe acute respiratory syndrome coronavirus 2 was detected in 16/21 patients, in cardiomyocytes, the endothelium, interstitial spaces, and percolating adipocytes within the myocardium. Virus detection typically corresponded with troponin depletion and increased cleaved caspase-3. Indirect mechanisms of injury-venous and arterial thromboses with associated vasculitis including a mixed inflammatory infiltrate-were also observed. Neutrophil extracellular traps (NETs) were present in the myocardium of all COVID-19 patients, regardless of injury degree. Borderline myocarditis (inflammation without associated myocyte injury) was observed in 19/21 patients, characterized by a predominantly mononuclear inflammatory infiltrate. Edema, inflammation of percolating adipocytes, lymphocytic aggregates, and large septal masses of inflammatory cells and platelets were observed as defining features, and myofibrillar damage was evident in all patients. Collectively, COVID-19-associated cardiac injury was multifactorial, with elevated levels of NETs and von Willebrand factor as defining features of direct and indirect viral injury.
Mucociliary Transport Deficiency and Disease Progression in Syrian Hamsters with SARS-CoV-2 Infection

bioRxiv : the preprint server for biology

2022 Jan 18

Li, Q;Vijaykumar, K;Philips, SE;Hussain, SS;Huynh, VN;Fernandez-Petty, CM;Lever, JEP;Foote, JB;Ren, J;Campos-Gómez, J;Daya, FA;Hubbs, NW;Kim, H;Onuoha, E;Boitet, ER;Fu, L;Leung, HM;Yu, L;Detchemendy, TW;Schaefers, LT;Tipper, JL;Edwards, LJ;Leal, SM;Harrod, KS;Tearney, GJ;Rowe, SM;
PMID: 35075457 | DOI: 10.1101/2022.01.16.476016

Substantial clinical evidence supports the notion that ciliary function in the airways plays an important role in COVID-19 pathogenesis. Although ciliary damage has been observed in both in vitro and in vivo models, consequent impaired mucociliary transport (MCT) remains unknown for the intact MCT apparatus from an in vivo model of disease. Using golden Syrian hamsters, a common animal model that recapitulates human COVID-19, we quantitatively followed the time course of physiological, virological, and pathological changes upon SARS-CoV-2 infection, as well as the deficiency of the MCT apparatus using micro-optical coherence tomography, a novel method to visualize and simultaneously quantitate multiple aspects of the functional microanatomy of intact airways. Corresponding to progressive weight loss up to 7 days post-infection (dpi), viral detection and histopathological analysis in both the trachea and lung revealed steadily descending infection from the upper airways, as the main target of viral invasion, to lower airways and parenchymal lung, which are likely injured through indirect mechanisms. SARS-CoV-2 infection caused a 67% decrease in MCT rate as early as 2 dpi, largely due to diminished motile ciliation coverage, but not airway surface liquid depth, periciliary liquid depth, or cilia beat frequency of residual motile cilia. Further analysis indicated that the fewer motile cilia combined with abnormal ciliary motion of residual cilia contributed to the delayed MCT. The time course of physiological, virological, and pathological progression suggest that functional deficits of the MCT apparatus predispose to COVID-19 pathogenesis by extending viral retention and may be a risk factor for secondary infection. As a consequence, therapies directed towards the MCT apparatus deserve further investigation as a treatment modality.
Binding of SARS-CoV-2 to the avb6 Integrins May Promote Severe COVID in Patients with IPF

TP105. TP105 BASIC MECHANISMS OF LUNG INFECTIONS: FROM SARS-COV-2 TO INFLUENZA

2021 May 01

Joseph, C;Peacock, T;Calver, J;John, A;Organ, L;Fainberg, H;Porte, J;Mukhopadhyay, S;Barton, L;Stroberg, E;Duval, E;Copin, M;Poissy, J;Steinestel, K;Tatler, A;Barclay, W;Jenkins, G;
| DOI: 10.1164/ajrccm-conference.2021.203.1_MeetingAbstracts.A4170

RATIONALE: Patients with idiopathic pulmonary fibrosis (IPF) have worse outcomes following COVID-19. SARSCoV-2 (2019-nCoV) spike protein (S1) harbors an RGD motif in its receptor-binding domain (RBD). Although SARS-CoV-2 is to exploit human Angiotensin Converting Enzyme-2 (ACE2) receptors for cell entry. Single Cell RNA-seq showed that normal lung expresses low levels of ACE2 with very low expression (1.5%) in Alveolar type 2 epithelial cells. It is possible that SARS-CoV-2 needs a cellular co-receptor, which could include integrins, to promote alveolar cell internalization and pneumonitis.METHODS: Solid-phase binding assays were used to investigate S1 binding to ACE2 or αv containing integrins. Pseudovirus entry assays were used to measure the internalization of SARS-CoV-2 into Human embryonic kidney 293T cells expressing different combinations of potential receptors. RNAscope was used to visualize the co-localization of SARS-CoV-2, ACE2, and integrin mRNAs. Immunohistochemistry was used to evaluate the expression of αvβ6 integrins and ACE2 in lung tissue.RESULTS: Binding assays demonstrated that the RGD containing αvβ3 and αvβ6 integrins bound robustly to the SARS-CoV-2 S1 subunit of Spike protein and overexpression of the αvβ6 integrin modestly augments ACE2 mediated SARS-CoV-2 pseudoviral entry into epithelial cells. In COVID-19 damaged lung ACE2 levels are low but the αvβ6 integrin levels are increased in alveolar epithelium whereas both ACE2 and αvβ6 integrin are increased in lung sections from idiopathic pulmonary fibrosis compared with normal lung samples. CONCLUSION: The SARS-CoV-2 S1 subunit can bind αvβ6 integrins augmenting ACE2-dependent internalization of pseudovirus. In IPF patients, ACE2 levels and αvβ6 integrin levels are increased. Increased binding of the SARS-CoV-2 to ACE2 and the αvβ6 integrin within fibrotic lung may explain the increased risk of severe COVID in patients with IPF.
Preclinical evaluation of a plant-derived SARS-CoV-2 subunit vaccine: Protective efficacy, immunogenicity, safety, and toxicity

Vaccine

2022 Jun 06

Shanmugaraj, B;Khorattanakulchai, N;Panapitakkul, C;Malla, A;Im-Erbsin, R;Inthawong, M;Sunyakumthorn, P;Hunsawong, T;Klungthong, C;Reed, MC;Kemthong, T;Suttisan, N;Malaivijitnond, S;Srimangkornkaew, P;Klinkhamhom, A;Manopwisedjaroen, S;Thitithanyanont, A;Taychakhoonavudh, S;Phoolcharoen, W;
PMID: 35697573 | DOI: 10.1016/j.vaccine.2022.05.087

Coronavirus disease 2019 (COVID-19) is an acute respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The prevention of SARS-CoV-2 transmission has become a global priority. Previously, we showed that a protein subunit vaccine that was developed based on the fusion of the SARS-CoV-2 receptor-binding domain (RBD) to the Fc portion of human IgG1 (RBD-Fc), produced in Nicotiana benthamiana, and adjuvanted with alum, namely, Baiya SARS-CoV-2 Vax 1, induced potent immunological responses in both mice and cynomolgus monkeys. Hence, this study evaluated the protective efficacy, safety, and toxicity of Baiya SARS-CoV-2 Vax 1 in K18-hACE2 mice, monkeys and Wistar rats. Two doses of vaccine were administered three weeks apart on Days 0 and 21. The administration of the vaccine to K18-hACE2 mice reduced viral loads in the lungs and brains of the vaccinated animals and protected the mice against challenge with SARS-CoV-2. In monkeys, the results of safety pharmacology tests, general clinical observations, and a core battery of studies of three vital systems, namely, the central nervous, cardiovascular, and respiratory systems, did not reveal any safety concerns. The toxicology study of the vaccine in rats showed no vaccine-related pathological changes, and all the animals remained healthy under the conditions of this study. Furthermore, the vaccine did not cause any abnormal toxicity in rats and was clinically tolerated even at the highest tested concentration. In addition, general health status, body temperature, local toxicity at the administration site, hematology, and blood chemistry parameters were also monitored. Overall, this work presents the results of the first systematic study of the safety profile of a plant-derived vaccine, Baiya SARS-CoV-2 Vax 1; this approach can be considered a viable strategy for the development of vaccines against COVID-19.
Restriction of SARS-CoV-2 replication in the human placenta

Placenta

2022 Jul 01

Takada, K;Shimodai-Yamada, S;Suzuki, M;Trinh, Q;Takano, C;Kawakami, K;Asai-Sato, M;Komatsu, A;Okahashi, A;Nagano, N;Misawa, T;Yamaguchi, K;Suzuki, T;Kawana, K;Morioka, I;Yamada, H;Hayakawa, S;Hao, H;Komine-Aizawa, S;
| DOI: 10.1016/j.placenta.2022.07.010

Although SARS-CoV-2 can infect human placental tissue, vertical transmission is rare. Therefore, the placenta may function as a barrier to inhibit viral transmission to the foetus, though the mechanisms remain unclear. In this study, we confirmed the presence of the SARS-CoV-2 genome in human placental tissue by in situ hybridization with antisense probes targeting the spike protein; tissue staining was much lower when using sense probes for the spike protein. To the best of our knowledge, this is the first evidence directly indicating inefficient viral replication in the SARS-CoV-2-infected placenta. Additional studies are required to reveal the detailed mechanisms.
Acute Mesenteric Ischemia in Patients with COVID-19: Review of the literature

Journal of the National Medical Association

2021 Dec 29

Chen, C;Li, YW;Shi, PF;Qian, SX;
PMID: 34973847 | DOI: 10.1016/j.jnma.2021.12.003

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global health emergency. In addition to common respiratory symptoms, some patients with COVID-19 infections may experience a range of extra-pulmonary manifestations, such as digestive system involvement. Patients with COVID-19 have been reported to suffer from acute mesenteric ischemia (AMI) that is associated with disease-related severity and mortality. However, in the context of COVID-19, the exact cause of AMI has yet to be clearly defined. This review provides a comprehensive overview of the available data and elucidates the possible underlying mechanisms linking COVID-19 to AMI, in addition to highlighting therapeutic approaches for clinicians. Finally, given the severe global impact of COVID-19, we emphasize the importance of coordinated vaccination programs.
Successful hemostasis of bleeding gastric inflammatory fibroid polyp by endoscopic treatment in a patient with severe COVID-19

Clinical journal of gastroenterology

2021 Apr 11

Murota, A;Yoshi, S;Okuda, R;Oowada, S;Yamakawa, T;Kazama, T;Hirayama, D;Ishigami, K;Yamano, HO;Narimatu, E;Sugita, S;Hasegawa, T;Nakase, H;
PMID: 33840076 | DOI: 10.1007/s12328-021-01402-w

The coronavirus disease-2019 (COVID-19) has rapidly become a pandemic, resulting in a global suspension of non-emergency medical procedures such as screening endoscopic examinations. There have been several reports of COVID-19 patients presenting with gastrointestinal symptoms such as diarrhea and vomiting. In this report, we present a case of successful hemostasis of bleeding gastric inflammatory fibroid polyp by endoscopic treatment in a patient with severe COVID-19. The case was under mechanical ventilation with extracorporeal membrane oxygenation (ECMO), and the airway was on a closed circuit. This indicates that COVID-19 is associated with not only lung injury but also intestinal damage, and that proper protective protocols are essential in guaranteeing the best outcomes for patients and clinical professionals during this pandemic.
In SARS-CoV-2 delta variants, Spike-P681R and D950N promote membrane fusion, Spike-P681R enhances spike cleavage, but neither substitution affects pathogenicity in hamsters

EBioMedicine

2023 Apr 10

Furusawa, Y;Kiso, M;Iida, S;Uraki, R;Hirata, Y;Imai, M;Suzuki, T;Yamayoshi, S;Kawaoka, Y;
PMID: 37043872 | DOI: 10.1016/j.ebiom.2023.104561

The SARS-CoV-2 delta (B.1.617.2 lineage) variant was first identified at the end of 2020 and possessed two unique amino acid substitutions in its spike protein: S-P681R, at the S1/S2 cleavage site, and S-D950N, in the HR1 of the S2 subunit. However, the roles of these substitutions in virus phenotypes have not been fully characterized.We used reverse genetics to generate Wuhan-D614G viruses with these substitutions and delta viruses lacking these substitutions and explored how these changes affected their viral characteristics in vitro and in vivo.S-P681R enhanced spike cleavage and membrane fusion, whereas S-D950N slightly promoted membrane fusion. Although S-681R reduced the virus replicative ability especially in VeroE6 cells, neither substitution affected virus replication in Calu-3 cells and hamsters. The pathogenicity of all recombinant viruses tested in hamsters was slightly but not significantly affected.Our observations suggest that the S-P681R and S-D950N substitutions alone do not increase virus pathogenicity, despite of their enhancement of spike cleavage or fusogenicity.A full list of funding bodies that contributed to this study can be found under Acknowledgments.

Pages

  • « first
  • ‹ previous
  • …
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?