Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (232)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • SARS-CoV-2 (113) Apply SARS-CoV-2 filter
  • V-nCoV2019-S (30) Apply V-nCoV2019-S filter
  • SARS-CoV-2  (13) Apply SARS-CoV-2  filter
  • Ace2 (10) Apply Ace2 filter
  • TBD (8) Apply TBD filter
  • V-nCoV2019-orf1ab-sense (5) Apply V-nCoV2019-orf1ab-sense filter
  • SARS-CoV-2 S (5) Apply SARS-CoV-2 S filter
  • CD68 (4) Apply CD68 filter
  • TMPRSS2 (4) Apply TMPRSS2 filter
  • V-nCoV2019-S-sense (4) Apply V-nCoV2019-S-sense filter
  • SARS-CoV-2 spike (4) Apply SARS-CoV-2 spike filter
  • Il-6 (3) Apply Il-6 filter
  • V-nCoV-2019-S (3) Apply V-nCoV-2019-S filter
  • Rbfox3 (2) Apply Rbfox3 filter
  • IL1B (2) Apply IL1B filter
  • IL6 (2) Apply IL6 filter
  • Ifnb1 (2) Apply Ifnb1 filter
  • Sftpc (2) Apply Sftpc filter
  • nCoV2019-S (2) Apply nCoV2019-S filter
  • nCoV2019-S-sense (2) Apply nCoV2019-S-sense filter
  • hACE2 (2) Apply hACE2 filter
  • Cxc19 (2) Apply Cxc19 filter
  • SARS‐CoV‐2 (2) Apply SARS‐CoV‐2 filter
  • SARS- CoV-2 (2) Apply SARS- CoV-2 filter
  • Axin2 (1) Apply Axin2 filter
  • CCL5 (1) Apply CCL5 filter
  • C1qa (1) Apply C1qa filter
  • CFB (1) Apply CFB filter
  • Wnt5a (1) Apply Wnt5a filter
  • KRT18 (1) Apply KRT18 filter
  • Ccl2 (1) Apply Ccl2 filter
  • CXCL10 (1) Apply CXCL10 filter
  • ADCY3 (1) Apply ADCY3 filter
  • Tnf (1) Apply Tnf filter
  • EPCAM (1) Apply EPCAM filter
  • FLT1 (1) Apply FLT1 filter
  • GFAP (1) Apply GFAP filter
  • Omp (1) Apply Omp filter
  • Casp1 (1) Apply Casp1 filter
  • Mpo (1) Apply Mpo filter
  • KIT (1) Apply KIT filter
  • LCN2 (1) Apply LCN2 filter
  • PECAM1 (1) Apply PECAM1 filter
  • MCAM (1) Apply MCAM filter
  • PDGFRA (1) Apply PDGFRA filter
  • PPIB (1) Apply PPIB filter
  • 16SrRNA (1) Apply 16SrRNA filter
  • Cd163 (1) Apply Cd163 filter
  • VWF (1) Apply VWF filter
  • WNT2 (1) Apply WNT2 filter

Product

  • RNAscope (50) Apply RNAscope filter
  • RNAscope 2.5 HD Red assay (48) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent Assay (28) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Brown Assay (24) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (15) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 LS Assay (15) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Duplex (5) Apply RNAscope 2.5 HD Duplex filter
  • TBD (5) Apply TBD filter
  • RNAscope Multiplex Fluorescent v2 (4) Apply RNAscope Multiplex Fluorescent v2 filter
  • BASEscope Assay RED (2) Apply BASEscope Assay RED filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Fluorescent Multiplex Assay (2) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope ISH Probe High Risk HPV (1) Apply RNAscope ISH Probe High Risk HPV filter
  • RNAscope Multiplex fluorescent reagent kit v2 (1) Apply RNAscope Multiplex fluorescent reagent kit v2 filter
  • RNAscope Target Retrieval Reagents (1) Apply RNAscope Target Retrieval Reagents filter

Research area

  • (-) Remove Covid filter Covid (232)
  • Infectious (82) Apply Infectious filter
  • Inflammation (21) Apply Inflammation filter
  • Immunotherapy (11) Apply Immunotherapy filter
  • Neuroscience (9) Apply Neuroscience filter
  • Reproduction (9) Apply Reproduction filter
  • Infectious Disease (6) Apply Infectious Disease filter
  • Vaccine (5) Apply Vaccine filter
  • Vaccines (5) Apply Vaccines filter
  • Lung (4) Apply Lung filter
  • Neuroinflammation (3) Apply Neuroinflammation filter
  • Alzheimer's Disease (2) Apply Alzheimer's Disease filter
  • Heart (2) Apply Heart filter
  • Heart Disease (2) Apply Heart Disease filter
  • Long Covid (2) Apply Long Covid filter
  • Other: Methods (2) Apply Other: Methods filter
  • Adrenal (1) Apply Adrenal filter
  • Bioinformatics (1) Apply Bioinformatics filter
  • Cancer (1) Apply Cancer filter
  • chimeric VLP-based Vaccine (1) Apply chimeric VLP-based Vaccine filter
  • COVID-19-associated pulmonary aspergillosis (1) Apply COVID-19-associated pulmonary aspergillosis filter
  • Equine coronavirus (1) Apply Equine coronavirus filter
  • Fibrosis (1) Apply Fibrosis filter
  • Immunology (1) Apply Immunology filter
  • Immunothearpy (1) Apply Immunothearpy filter
  • Infammation (1) Apply Infammation filter
  • Infectious Disease: influenza-associated pulmonary aspergillosis (1) Apply Infectious Disease: influenza-associated pulmonary aspergillosis filter
  • Infectious Disease: influenza-associated pulmonary aspergillosis (1) Apply Infectious Disease: influenza-associated pulmonary aspergillosis filter
  • Infectiouse Disease: Flu (1) Apply Infectiouse Disease: Flu filter
  • Influenza (1) Apply Influenza filter
  • Long-Covid (1) Apply Long-Covid filter
  • Lung fibrosis (1) Apply Lung fibrosis filter
  • Organ transplant (1) Apply Organ transplant filter
  • Other: Lung (1) Apply Other: Lung filter
  • pharmacotherapy (1) Apply pharmacotherapy filter
  • Pulmonary disease (1) Apply Pulmonary disease filter
  • Reproductive Biology (1) Apply Reproductive Biology filter
  • Respiratory Disease (1) Apply Respiratory Disease filter
  • Sex Differences (1) Apply Sex Differences filter
  • Thyroid (1) Apply Thyroid filter
  • Tuberculosis (1) Apply Tuberculosis filter
  • Vaccine-associated enhanced respiratory disease (1) Apply Vaccine-associated enhanced respiratory disease filter
  • Vaccines Associated Hepatitis (1) Apply Vaccines Associated Hepatitis filter

Category

  • Publications (232) Apply Publications filter
The severity of SARS-CoV-2 infection in K18-hACE2 mice is attenuated by a novel steroid-derivative in a gender-specific manner

British journal of pharmacology

2023 May 31

Gupte, SA;Bakshi, CS;Blackham, E;Duhamel, GE;Jordan, A;Salgame, P;D'silva, M;Khan, MY;Nadler, J;Gupte, R;
PMID: 37259182 | DOI: 10.1111/bph.16155

COVID-19 infections caused by SARS-CoV-2 disseminate through human-to-human transmission can evoke severe inflammation. Treatments to reduce the SARS-CoV-2-associated inflammation are needed and are the focus of much research. In this study, we investigated the effect of N-Ethyl-N'-[(3β,5α)-17-oxoandrostan-3-yl] urea (NEOU), a novel 17α-ketosteroid derivative, on the severity of COVID-19 infections.Studies were conducted in SARS-CoV-2-infected K18-hACE2 mice.SARS-CoV-2-infected K18-hACE2 mice developed severe inflammatory crises and immune responses along with up-regulation of genes in associated signaling pathways in male more than female mice. Notably, SARS-CoV-2 infection down-regulated genes encoding drug metabolizing cytochrome P450 enzymes in male but not female mice. Treatment with NEOU (1 mg/kg/day) 24 or 72 h post-viral infection alleviated lung injury by decreasing expression of genes encoding inflammatory cytokines and chemokines while increasing expression of genes encoding immunoglobins. In situ hybridization using RNA scope probes and immunohistochemical assays revealed that NEOU increased resident CD169+ immunoregulatory macrophages and IBA-1 immunoreactive macrophage-dendritic cells within alveolar spaces in the lungs of infected mice. Consequentially, NEOU reduced morbidity more prominently in male than female mice. However, NEOU increased median survival time and accelerated recovery from infection by 6 days in both males and females.These findings demonstrate that SARS-CoV-2 exhibits gender bias by differentially regulating genes encoding inflammatory cytokines, immunogenic factors, and drug-metabolizing enzymes, in male versus female mice. Most importantly, we identified a novel 17α-ketosteroid that reduces the severity of COVID-19 infection and could be beneficial for reducing impact of COVID-19.This article is protected by
Single-Cell RNA-seq Reveals Angiotensin-Converting Enzyme 2 and Transmembrane Serine Protease 2 Expression in TROP2+ Liver Progenitor Cells: Implications in Coronavirus Disease 2019-Associated Liver Dysfunction

Frontiers in medicine

2021 Apr 22

Seow, JJW;Pai, R;Mishra, A;Shepherdson, E;Lim, TKH;Goh, BKP;Chan, JKY;Chow, PKH;Ginhoux, F;DasGupta, R;Sharma, A;
PMID: 33968947 | DOI: 10.3389/fmed.2021.603374

The recent coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2. COVID-19 was first reported in China (December 2019) and is now prevalent across the globe. Entry of severe acute respiratory syndrome coronavirus 2 into mammalian cells requires the binding of viral Spike (S) proteins to the angiotensin-converting enzyme 2 receptor. Once entered, the S protein is primed by a specialized serine protease, transmembrane serine protease 2 in the host cell. Importantly, besides the respiratory symptoms that are consistent with other common respiratory virus infections when patients become viremic, a significant number of COVID-19 patients also develop liver comorbidities. We explored whether a specific target cell-type in the mammalian liver could be implicated in disease pathophysiology other than the general deleterious response to cytokine storms. Here, we used single-cell RNA-seq to survey the human liver and identified potentially implicated liver cell-type for viral ingress. We analyzed ~300,000 single cells across five different (i.e., human fetal, healthy, cirrhotic, tumor, and adjacent normal) liver tissue types. This study reports on the co-expression of angiotensin-converting enzyme 2 and transmembrane serine protease 2 in a TROP2+ liver progenitor population. Importantly, we detected enrichment of this cell population in the cirrhotic liver when compared with tumor tissue. These results indicated that in COVID-19-associated liver dysfunction and cell death, a viral infection of TROP2+ progenitors in the liver might significantly impair liver regeneration in patients with liver cirrhosis.
AUTOPSY STUDY OF TESTICLES IN COVID-19: UPREGULATION OF IMMUNE-RELATED GENES AND DOWNREGULATION OF TESTIS-SPECIFIC GENES

The Journal of clinical endocrinology and metabolism

2022 Oct 19

Basolo, A;Poma, AM;Macerola, E;Bonuccelli, D;Proietti, A;Salvetti, A;Vignali, P;Torregrossa, L;Evangelisti, L;Sparavelli, R;Giannini, R;Ugolini, C;Basolo, F;Santini, F;Toniolo, A;
PMID: 36260523 | DOI: 10.1210/clinem/dgac608

Infection by SARS-CoV-2 may be associated with testicular dysfunction that could affect male fertility.Testicles of fatal COVID-19 cases were investigated to detect virus in tissue and to evaluate histopathological and transcriptomic changes.Three groups were compared: a. uninfected controls (subjects dying of trauma or sudden cardiac death; n = 10); b. subjects dying of COVID-19 (virus-negative in testes; n = 15); c. subjects dying of COVID-19 (virus-positive in testes; n = 9). SARS-CoV-2 genome and nucleocapsid antigen were probed using RT-PCR, in situ hybridization, immunohistochemistry (IHC). Infiltrating leukocytes were typed by IHC. mRNA transcripts of immune-related and testis-specific genes were quantified using the nCounter method.SARS-CoV-2 was detected in testis tissue of 9/24 (37%) COVID-19 cases accompanied by scattered T-cell and macrophage infiltrates. Size of testicles and counts of spermatogenic cells were not significantly different among groups. Analysis of mRNA transcripts showed that in virus-positive testes immune processes were activated (interferon-alpha and -gamma pathways). By contrast, transcription of 12 testis-specific genes was downregulated, independently of virus positivity in tissue. By IHC, expression of the luteinizing hormone/choriogonadotropin receptor was enhanced in virus-positive compared to virus-negative testicles, while expression of receptors for androgens and the follicle-stimulating hormone were not significantly different among groups.In lethal COVID-19 cases, infection of testicular cells is not uncommon. Viral infection associates with activation of interferon pathways and downregulation of testis-specific genes involved in spermatogenesis. Due to the exceedingly high numbers of infected people in the pandemic, the impact of virus on fertility should be further investigated.
Comparative characterization of SARS-CoV-2 variants of concern and mouse-adapted strains in mice

Journal of medical virology

2022 Mar 23

Chen, Q;Huang, XY;Liu, Y;Sun, MX;Ji, B;Zhou, C;Chi, H;Zhang, RR;Luo, D;Tian, Y;Li, XF;Zhao, H;Qin, CF;
PMID: 35322439 | DOI: 10.1002/jmv.27735

SARS-CoV-2 has evolved into a panel of variants of concern (VOCs) and constituted a sustained threat to global health. The wildtype (WT) SARS-CoV-2 isolates fail to infect mice, while the Beta variant, one of the VOCs, has acquired the capability to infect standard laboratory mice, raising a spreading risk of SARS-CoV-2 from humans to mice. However, the infectivity and pathogenicity of other VOCs in mice remain not fully understood. In this study, we systematically investigated the infectivity and pathogenicity of three VOCs, Alpha, Beta, and Delta, in mice in comparison with two well-understood SARS-CoV-2 mouse-adapted strains, MASCp6 and MASCp36, sharing key mutations in the receptor-binding domain (RBD) with Alpha or Beta, respectively. Our results showed that the Beta variant had the strongest infectivity and pathogenicity among the three VOCs, while the Delta variant only caused limited replication and mild pathogenic changes in the mouse lung, which is much weaker than what the Alpha variant did. Meanwhile, Alpha showed comparable infectivity in lungs in comparison with MASCp6, and Beta only showed slightly lower infectivity in lungs when compared with MASCp36. These results indicated that all three VOCs have acquired the capability to infect mice, highlighting the ongoing spillover risk of SARS-CoV-2 from humans to mice during the continued evolution of SARS-CoV-2, and that the key amino acid mutations in the RBD of mouse-adapted strains may be referenced as an early-warning indicator for predicting the spillover risk of newly emerging SARS-CoV-2 variants.
Characterization and antiviral susceptibility of SARS-CoV-2 Omicron/BA.2

Research square

2022 Feb 24

Kawaoka, Y;Uraki, R;Kiso, M;Iida, S;Imai, M;Takashita, E;Kuroda, M;Halfmann, P;Loeber, S;Maemura, T;Yamayoshi, S;Fujisaki, S;Wang, Z;Ito, M;Ujie, M;Iwatsuki-Horimoto, K;Furusawa, Y;Wright, R;Chong, Z;Ozono, S;Yasuhara, A;Ueki, H;Sakai, Y;Li, R;Liu, Y;Larson, D;Koga, M;Tsutsumi, T;Adachi, E;Saito, M;Yamamoto, S;Matsubara, S;Hagihara, M;Mitamura, K;Sato, T;Hojo, M;Hattori, SI;Maeda, K;Okuda, M;Murakami, J;Duong, C;Godbole, S;Douek, D;Watanabe, S;Ohmagari, N;Yotsuyanagi, H;Diamond, M;Hasegawa, H;Mitsuya, H;Suzuki, T;
PMID: 35233565 | DOI: 10.21203/rs.3.rs-1375091/v1

The recent emergence of SARS-CoV-2 Omicron variants possessing large numbers of mutations has raised concerns of decreased effectiveness of current vaccines, therapeutic monoclonal antibodies, and antiviral drugs for COVID-19 against these variants1,2. While the original Omicron lineage, BA.1, has become dominant in many countries, BA.2 has been detected in at least 67 countries and has become dominant in the Philippines, India, and Denmark. Here, we evaluated the replicative ability and pathogenicity of an authentic infectious BA.2 isolate in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. In contrast to recent data with chimeric, recombinant SARS-CoV-2 strains expressing the spike proteins of BA.1 and BA.2 on an ancestral WK-521 backbone3, we observed similar infectivity and pathogenicity in mice and hamsters between BA.2 and BA.1, and less pathogenicity compared to early SARS-CoV-2 strains. We also observed a marked and significant reduction in the neutralizing activity of plasma from COVID-19 convalescent individuals and vaccine recipients against BA.2 compared to ancestral and Delta variant strains. In addition, we found that some therapeutic monoclonal antibodies (REGN10987/REGN10933, COV2-2196/COV2-2130, and S309) and antiviral drugs (molnupiravir, nirmatrelvir, and S-217622) can restrict viral infection in the respiratory organs of hamsters infected with BA.2. These findings suggest that the replication and pathogenicity of BA.2 is comparable to that of BA.1 in rodents and that several therapeutic monoclonal antibodies and antiviral compounds are effective against Omicron/BA.2 variants.
MVA vector expression of SARS-CoV-2 spike protein and protection of adult Syrian hamsters against SARS-CoV-2 challenge

NPJ vaccines

2021 Dec 03

Meseda, CA;Stauft, CB;Selvaraj, P;Lien, CZ;Pedro, C;Nuñez, IA;Woerner, AM;Wang, TT;Weir, JP;
PMID: 34862398 | DOI: 10.1038/s41541-021-00410-8

Numerous vaccine candidates against SARS-CoV-2, the causative agent of the COVID-19 pandemic, are under development. The majority of vaccine candidates to date are designed to induce immune responses against the viral spike (S) protein, although different forms of S antigen have been incorporated. To evaluate the yield and immunogenicity of different forms of S, we constructed modified vaccinia virus Ankara (MVA) vectors expressing full-length S (MVA-S), the RBD, and soluble S ectodomain and tested their immunogenicity in dose-ranging studies in mice. All three MVA vectors induced spike-specific immunoglobulin G after one subcutaneous immunization and serum titers were boosted following a second immunization. The MVA-S and MVA-ssM elicited the strongest neutralizing antibody responses. In assessing protective efficacy, MVA-S-immunized adult Syrian hamsters were challenged with SARS-CoV-2 (USA/WA1/2020). MVA-S-vaccinated hamsters exhibited less severe manifestations of atypical pneumocyte hyperplasia, hemorrhage, vasculitis, and especially consolidation, compared to control animals. They also displayed significant reductions in gross pathology scores and weight loss, and a moderate reduction in virus shedding was observed post challenge in nasal washes. There was evidence of reduced viral replication by in situ hybridization, although the reduction in viral RNA levels in lungs and nasal turbinates did not reach significance. Taken together, the data indicate that immunization with two doses of an MVA vector expressing SARS-CoV-2 S provides protection against a stringent SARS-CoV-2 challenge of adult Syrian hamsters, reaffirm the utility of this animal model for evaluating candidate SARS-CoV-2 vaccines, and demonstrate the value of an MVA platform in facilitating vaccine development against SARS-CoV-2.
Intrauterine Fetal Demise After Uncomplicated COVID-19: What Can We Learn from the Case?

Viruses

2021 Dec 19

Babal, P;Krivosikova, L;Sarvaicova, L;Deckov, I;Szemes, T;Sedlackova, T;Palkovic, M;Kalinakova, A;Janega, P;
PMID: 34960815 | DOI: 10.3390/v13122545

SARS-CoV-2 infection in pregnant women can lead to placental damage and transplacental infection transfer, and intrauterine fetal demise is an unpredictable event.A 32-year-old patient in her 38th week of pregnancy reported loss of fetal movements. She overcame mild COVID-19 with positive PCR test 22 days before. A histology of the placenta showed deposition of intervillous fibrinoid, lympho-histiocytic infiltration, scant neutrophils, clumping of villi, and extant infarctions. Immunohistochemistry identified focal SARS-CoV-2 nucleocapsid and spike protein in the syncytiotrophoblast and isolated in situ hybridization of the virus' RNA. Low ACE2 and TMPRSS2 contrasted with strong basigin/CD147 and PDL-1 positivity in the trophoblast. An autopsy of the fetus showed no morphological abnormalities except for lung interstitial infiltrate, with prevalent CD8-positive T-lymphocytes and B-lymphocytes. Immunohistochemistry and in situ hybridization proved the presence of countless dispersed SARS-CoV-2-infected epithelial and endothelial cells in the lung tissue. The potential virus-receptor protein ACE2, TMPRSS2, and CD147 expression was too low to be detected.Over three weeks' persistence of trophoblast viral infection lead to extensive intervillous fibrinoid depositions and placental infarctions. High CD147 expression might serve as the dominant receptor for the virus, and PDL-1 could limit maternal immunity in placental tissue virus clearance. The presented case indicates that the SARS-CoV-2 infection-induced changes in the placenta lead to ischemia and consecutive demise of the fetus. The infection of the fetus was without significant impact on its death. This rare complication of pregnancy can appear independently to the severity of COVID-19's clinical course in the pregnant mother.
EXPRESS: Mechanisms of SARS-CoV-2 Induced Lung Vascular Disease: Potential Role of Complement

Pulmonary Circulation

2021 Apr 23

Stenmark, K;Frid, M;gerasimovskaya, e;zhang, h;McCarthy, M;Thurman, J;Morrison, T;
| DOI: 10.1177/20458940211015799

: The outbreak of COVID-19 disease, caused by SARS-CoV-2 beta-coronovirus, urges a focused search for the underlying mechanisms and treatment options. The lung is the major target organ of COVID-19, wherein the primary cause of mortality is hypoxic respiratory failure, resulting from acute respiratory disease syndrome (ARDS), with severe hypoxemia, often requiring assisted ventilation. While similar in some ways to ARDS secondary to other causes, lungs of some patients dying with COVID-19 exhibit distinct features of vascular involvement, including severe endothelial injury and cell death via apoptosis and/or pyroptosis, widespread capillary inflammation and thrombosis. Furthermore, the pulmonary pathology of COVID-19 is characterized by focal inflammatory cell infiltration, impeding alveolar gas exchange resulting in areas of local tissue hypoxia, consistent with potential amplification of COVID-19 pathogenicity by hypoxia. Vascular endothelial cells play essential roles in both innate and adaptive immune responses, and are considered to be “conditional innate immune cells” centrally participating in various inflammatory, immune pathologies. Activated endothelial cells produce cytokines/chemokines, dynamically recruit and activate inflammatory cells and platelets, and centrally participate in pro-thrombotic processes (thrombotic microangiopathies). Initial reports presented pathological findings of localized direct infection of vascular endothelial cells with SARS-CoV-2, yet emerging evidence does not support direct infection of endothelial or other vascular wall cell and thus widespread endothelial cell dysfunction and inflammation may be better explained as secondary responses to epithelial cell infection and inflammation. Endothelial cells are also actively engaged in a cross-talk with the complement system, the essential arm of innate immunity. Recent reports present evidence for complement deposition in SARS-CoV-2-damaged lung microcirculation, further strengthening the idea that, in severe cases of COVID-19, complement activation is an essential player, generating destructive hemorrhagic, capillariitis-like tissue damage, clotting, and hyper-inflammation. Thus, complement-targeted therapies are actively in development. This review is intended to explore in detail these ideas.
Caspase-4/11 exacerbates disease severity in SARS-CoV-2 infection by promoting inflammation and immunothrombosis

Proceedings of the National Academy of Sciences of the United States of America

2022 May 24

Eltobgy, MM;Zani, A;Kenney, AD;Estfanous, S;Kim, E;Badr, A;Carafice, C;Daily, K;Whitham, O;Pietrzak, M;Webb, A;Kawahara, J;Eddy, AC;Denz, P;Lu, M;Kc, M;Peeples, ME;Li, J;Zhu, J;Que, J;Robinson, R;Rosas Mejia, O;Rayner, RE;Hall-Stoodley, L;Seveau, S;Gavrilin, MA;Zhang, X;Thomas, J;Kohlmeier, JE;Suthar, MS;Oltz, E;Tedeschi, A;Robledo-Avila, FH;Partida-Sanchez, S;Hemann, EA;Abdelrazik, E;Forero, A;Nimjee, SM;Boyaka, PN;Cormet-Boyaka, E;Yount, JS;Amer, AO;
PMID: 35588457 | DOI: 10.1073/pnas.2202012119

SignificanceWe report the discovery of fundamental roles for the noncanonical inflammasome molecule Caspase-4/11 in promoting pathological inflammatory and prothrombotic pathways in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Our work demonstrates that Caspase-11 has a broader role in immune responses beyond its previously appreciated effects in bacterial infections. Further, we show that Caspase-11-deficient mice infected with SARS-CoV-2 fare significantly better in terms of overall illness, lung inflammation, and thrombosis than wild-type (WT) mice, thus implicating Caspase-11 as a new therapeutic target for preventing or treating COVID-19.
Is thyroid gland a target of SARS-CoV-2 infection? Results of the analysis of necropsy thyroid specimens from COVID-19 patients

Endocrine Abstracts

2021 May 15

Macedo, S;Pestana, A;Liliana, R;Neves, C;Susana, G;Guimarães, A;Dolhnikoff, M;Saldiva, P;Carneiro, F;Sobrinho-Simões, M;Soares, P;
| DOI: 10.1530/endoabs.73.oc14.3

In the 2002 outbreak of severe acute respiratory syndrome (SARS) a number of patients presented abnormalities in the thyroid functioning, neuroendocrine and calcium homeostasis. It was detected in autopsies from SARS Coronavirus (SARS-CoV) patients that the thyroid gland was significantly affected by the disease, with extensive injury and death of follicular and parafollicular cells. In the present SARS-CoV-2 pandemic some studies start to report acute thyroiditis and alterations in the levels of thyroid hormones [(triiodothyronine (T3), thyroxine (T4), thyroid stimulating hormone (TSH)]. Thyroid cells present high levels of mRNA expression of angiotensin-converting enzyme 2 (ACE2), the host receptor for SARS-CoV-2. It remains poorly studied the thyroid expression of proteins that predispose to SARS-CoV-2 infection and if thyroid cells can be a direct or indirect target of SARS-CoV-2 infection.
Subcellular Detection of SARS-CoV-2 RNA in Human Tissue Reveals Distinct Localization in Alveolar Type 2 Pneumocytes and Alveolar Macrophages

mBio

2022 Feb 08

Acheampong, KK;Schaff, DL;Emert, BL;Lake, J;Reffsin, S;Shea, EK;Comar, CE;Litzky, LA;Khurram, NA;Linn, RL;Feldman, M;Weiss, SR;Montone, KT;Cherry, S;Shaffer, SM;
PMID: 35130722 | DOI: 10.1128/mbio.03751-21

The widespread coronavirus disease 2019 (COVID-19) is caused by infection with the novel coronavirus SARS-CoV-2. Currently, we have limited understanding of which cells become infected with SARS-CoV-2 in human tissues and where viral RNA localizes on the subcellular level. Here, we present a platform for preparing autopsy tissue for visualizing SARS-CoV-2 RNA using RNA fluorescence in situ hybridization (FISH) with amplification by hybridization chain reaction. We developed probe sets that target different regions of SARS-CoV-2 (including ORF1a and N), as well as probe sets that specifically target SARS-CoV-2 subgenomic mRNAs. We validated these probe sets in cell culture and tissues (lung, lymph node, and placenta) from infected patients. Using this technology, we observe distinct subcellular localization patterns of the ORF1a and N regions. In human lung tissue, we performed multiplexed RNA FISH HCR for SARS-CoV-2 and cell-type-specific marker genes. We found viral RNA in cells containing the alveolar type 2 (AT2) cell marker gene (SFTPC) and the alveolar macrophage marker gene (MARCO) but did not identify viral RNA in cells containing the alveolar type 1 (AT1) cell marker gene (AGER). Moreover, we observed distinct subcellular localization patterns of viral RNA in AT2 cells and alveolar macrophages. In sum, we demonstrate the use of RNA FISH HCR for visualizing different RNA species from SARS-CoV-2 in cell lines and FFPE (formalin fixation and paraffin embedding) autopsy specimens. We anticipate that this platform could be broadly useful for studying SARS-CoV-2 pathology in tissues, as well as extended for other applications, including investigating the viral life cycle, viral diagnostics, and drug screening. IMPORTANCE Here, we developed an in situ RNA detection assay for RNA generated by the SARS-CoV-2 virus. We found viral RNA in lung, lymph node, and placenta samples from pathology specimens from COVID patients. Using high-magnification microscopy, we can visualize the subcellular distribution of these RNA in single cells.
The amplification of CNS damage in Alzheimer's disease due to SARS-CoV2 infection

Annals of Diagnostic Pathology

2022 Dec 01

Nuovo, GJ;Suster, D;Sawant, D;Mishra, A;Michaille, JJ;Tili, E;
| DOI: 10.1016/j.anndiagpath.2022.152057

Pre-existing Alzheimer's disease is a risk factor for severe/fatal COVID-19 and infection by SARS-CoV2 virus has been associated with an increased incidence of un-masked Alzheimer's disease. The molecular basis whereby SARS-CoV2 may amplify Alzheimer's disease is not well understood. This study analyzed the molecular changes in autopsy brain tissues from people with pre-existing dementia who died of COVID-19 (n = 5) which was compared to equivalent tissues of people who died of COVID-19 with no history of dementia (n = 8), Alzheimer's disease pre-COVID-19 (n = 10) and aged matched controls (n = 10) in a blinded fashion. Immunohistochemistry analyses for hyperphosphorylated tau protein, α-synuclein, and β-amyloid-42 confirmed the diagnoses of Alzheimer's disease (n = 4), and Lewy body dementia (n = 1) in the COVID-19 group. The brain tissues from patients who died of COVID-19 with no history of dementia showed a diffuse microangiopathy marked by endocytosis of spike subunit S1 and S2 in primarily CD31+ endothelia with strong co-localization with ACE2, Caspase-3, IL6, TNFα, and Complement component 6 that was not associated with SARS-CoV2 RNA. Microglial activation marked by increased TMEM119 and MCP1 protein expression closely paralleled the endocytosed spike protein. The COVID-19 tissues from people with no pre-existing dementia showed, compared to controls, 5-10× fold increases in expression of neuronal NOS and NMDAR2 as well as a marked decrease in the expression of proteins whose loss is associated with worsening Alzheimer's disease: MFSD2a, SHIP1, BCL6, BCL10, and BACH1. In COVID-19 tissues from people with dementia the widespread spike-induced microencephalitis with the concomitant microglial activation co-existed in the same areas where neurons had hyperphosphorylated tau protein suggesting that the already dysfunctional neurons were additionally stressed by the SARS-CoV2 induced microangiopathy. ACE2+ human brain endothelial cells treated with high dose (but not vaccine equivalent low dose) spike S1 protein demonstrated each of the molecular changes noted in the in vivo COVID-19 and COVID-19/Alzheimer's disease brain tissues. It is concluded that fatal COVID-19 induces a diffuse microencephalitis and microglial activation in the brain due to endocytosis of circulating viral spike protein that amplifies pre-existing dementia in at least two ways: 1) modulates the expression of proteins that may worsen Alzheimer's disease and 2) stresses the already dysfunctional neurons by causing an acute proinflammatory/hypercoagulable/hypoxic microenvironment in areas with abundant hyperphosphorylated tau protein and/or βA-42.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?