Mei, X;Li, J;Wang, Z;Zhu, D;Huang, K;Hu, S;Popowski, KD;Cheng, K;
PMID: 36759564 | DOI: 10.1038/s41563-023-01475-7
The surge of fast-spreading SARS-CoV-2 mutated variants highlights the need for fast, broad-spectrum strategies to counteract viral infections. In this work, we report a physical barrier against SARS-CoV-2 infection based on an inhalable bioadhesive hydrogel, named spherical hydrogel inhalation for enhanced lung defence (SHIELD). Conveniently delivered via a dry powder inhaler, SHIELD particles form a dense hydrogel network that coats the airway, enhancing the diffusional barrier properties and restricting virus penetration. SHIELD's protective effect is first demonstrated in mice against two SARS-CoV-2 pseudo-viruses with different mutated spike proteins. Strikingly, in African green monkeys, a single SHIELD inhalation provides protection for up to 8 hours, efficiently reducing infection by the SARS-CoV-2 WA1 and B.1.617.2 (Delta) variants. Notably, SHIELD is made with food-grade materials and does not affect normal respiratory functions. This approach could offer additional protection to the population against SARS-CoV-2 and other respiratory pathogens.
Wanner, N;Andrieux, G;Badia-I-Mompel, P;Edler, C;Pfefferle, S;Lindenmeyer, MT;Schmidt-Lauber, C;Czogalla, J;Wong, MN;Okabayashi, Y;Braun, F;Lütgehetmann, M;Meister, E;Lu, S;Noriega, MLM;Günther, T;Grundhoff, A;Fischer, N;Bräuninger, H;Lindner, D;Westermann, D;Haas, F;Roedl, K;Kluge, S;Addo, MM;Huber, S;Lohse, AW;Reiser, J;Ondruschka, B;Sperhake, JP;Saez-Rodriguez, J;Boerries, M;Hayek, SS;Aepfelbacher, M;Scaturro, P;Puelles, VG;Huber, TB;
PMID: 35347318 | DOI: 10.1038/s42255-022-00552-6
Extrapulmonary manifestations of COVID-19 have gained attention due to their links to clinical outcomes and their potential long-term sequelae1. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) displays tropism towards several organs, including the heart and kidney. Whether it also directly affects the liver has been debated2,3. Here we provide clinical, histopathological, molecular and bioinformatic evidence for the hepatic tropism of SARS-CoV-2. We find that liver injury, indicated by a high frequency of abnormal liver function tests, is a common clinical feature of COVID-19 in two independent cohorts of patients with COVID-19 requiring hospitalization. Using autopsy samples obtained from a third patient cohort, we provide multiple levels of evidence for SARS-CoV-2 liver tropism, including viral RNA detection in 69% of autopsy liver specimens, and successful isolation of infectious SARS-CoV-2 from liver tissue postmortem. Furthermore, we identify transcription-, proteomic- and transcription factor-based activity profiles in hepatic autopsy samples, revealing similarities to the signatures associated with multiple other viral infections of the human liver. Together, we provide a comprehensive multimodal analysis of SARS-CoV-2 liver tropism, which increases our understanding of the molecular consequences of severe COVID-19 and could be useful for the identification of organ-specific pharmacological targets.
Bader, SM;Cooney, JP;Pellegrini, M;Doerflinger, M;
PMID: 35244141 | DOI: 10.1042/BCJ20210602
Two years after the emergence of SARS-CoV-2, our understanding of COVID-19 disease pathogenesis is still incomplete. Despite unprecedented global collaborative scientific efforts and rapid vaccine development, an uneven vaccine roll-out and the emergence of novel variants of concern such as omicron underscore the critical importance of identifying the mechanisms that contribute to this disease. Overt inflammation and cell death have been proposed to be central drivers of severe pathology in COVID-19 patients and their pathways and molecular components therefore present promising targets for host-directed therapeutics. In our review, we summarize the current knowledge on the role and impact of diverse programmed cell death (PCD) pathways on COVID-19 disease. We dissect the complex connection of cell death and inflammatory signaling at the cellular and molecular level and identify a number of critical questions that remain to be addressed. We provide rationale for targeting of cell death as potential COVID-19 treatment and provide an overview of current therapeutics that could potentially enter clinical trials in the near future.
bioRxiv : the preprint server for biology
Dinnon, KH;Leist, SR;Okuda, K;Dang, H;Fritch, EJ;Gully, KL;De la Cruz, G;Evangelista, MD;Asakura, T;Gilmore, RC;Hawkins, P;Nakano, S;West, A;Schäfer, A;Gralinski, LE;Everman, JL;Sajuthi, SP;Zweigart, MR;Dong, S;McBride, J;Cooley, MR;Hines, JB;Love, MK;Groshong, SD;VanSchoiack, A;Phelan, SJ;Liang, Y;Hether, T;Leon, M;Zumwalt, RE;Barton, LM;Duval, EJ;Mukhopadhyay, S;Stroberg, E;Borczuk, A;Thorne, LB;Sakthivel, MK;Lee, YZ;Hagood, JS;Mock, JR;Seibold, MA;O'Neal, WK;Montgomery, SA;Boucher, RC;Baric, RS;
PMID: 35194605 | DOI: 10.1101/2022.02.15.480515
COVID-19 survivors develop post-acute sequelae of SARS-CoV-2 (PASC), but the mechanistic basis of PASC-associated lung abnormalities suffers from a lack of longitudinal samples. Mouse-adapted SARS-CoV-2 MA10 produces an acute respiratory distress syndrome (ARDS) in mice similar to humans. To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute disease through clinical recovery. At 15-120 days post-virus clearance, histologic evaluation identified subpleural lesions containing collagen, proliferative fibroblasts, and chronic inflammation with tertiary lymphoid structures. Longitudinal spatial transcriptional profiling identified global reparative and fibrotic pathways dysregulated in diseased regions, similar to human COVID-19. Populations of alveolar intermediate cells, coupled with focal upregulation of pro-fibrotic markers, were identified in persistently diseased regions. Early intervention with antiviral EIDD-2801 reduced chronic disease, and early anti-fibrotic agent (nintedanib) intervention modified early disease severity. This murine model provides opportunities to identify pathways associated with persistent SARS-CoV-2 pulmonary disease and test countermeasures to ameliorate PASC.
Wagner, TR;Schnepf, D;Beer, J;Ruetalo, N;Klingel, K;Kaiser, PD;Junker, D;Sauter, M;Traenkle, B;Frecot, DI;Becker, M;Schneiderhan-Marra, N;Ohnemus, A;Schwemmle, M;Schindler, M;Rothbauer, U;
PMID: 34927793 | DOI: 10.15252/embr.202153865
The ongoing COVID-19 pandemic and the emergence of new SARS-CoV-2 variants of concern (VOCs) requires continued development of effective therapeutics. Recently, we identified high-affinity neutralizing nanobodies (Nbs) specific for the receptor-binding domain (RBD) of SARS-CoV-2. Taking advantage of detailed epitope mapping, we generate two biparatopic Nbs (bipNbs) targeting a conserved epitope outside and two different epitopes inside the RBD:ACE2 interface. Both bipNbs bind all currently circulating VOCs with high affinities and are capable to neutralize cellular infection with VOC B.1.351 (Beta) and B.1.617.2 (Delta) in vitro. To assess if the bipNbs NM1267 and NM1268 confer protection against SARS-CoV-2 infection in vivo, human ACE2 transgenic mice are treated intranasally before infection with a lethal dose of SARS-CoV-2 B.1, B.1.351 (Beta) or B.1.617.2 (Delta). Nb-treated mice show significantly reduced disease progression and increased survival rates. Histopathological analyses further reveal a drastically reduced viral load and inflammatory response in lungs. These data suggest that both bipNbs are broadly active against a variety of emerging SARS-CoV-2 VOCs and represent easily applicable drug candidates.
Biopreservation and biobanking
Higgs, EF;Flood, BA;Pyzer, AR;Rouhani, SJ;Trujillo, JA;Gajewski, TF;
PMID: 35771982 | DOI: 10.1089/bio.2021.0169
Biobanking during the COVID-19 pandemic presented unique challenges regarding patient enrollment, sample collection, and experimental analysis. This report details the ways in which we rapidly overcame those challenges to create a robust database of clinical information and patient samples while maintaining clinician and researcher safety. We developed a pipeline using REDCap (Research Electronic Data Capture) to coordinate electronic informed consent, sample collection, immunological assay execution, and data analysis for biobanking samples from patients with COVID-19. We then integrated immunological assay data with clinical data extracted from the electronic health record to link study parameters with clinical readouts. Of the 193 inpatients who participated in this study, 138 consented electronically and 56 provided paper consent. We collected and banked blood samples to measure circulating cytokines and chemokines, peripheral immune cell composition and activation status, anti-COVID-19 antibodies, and germline gene polymorphisms. In addition, we collected DNA and RNA from nasopharyngeal swabs to assess viral titer and microbiome composition by 16S sequencing. The rapid spread and contagious nature of COVID-19 required special considerations and innovative solutions to biobank samples quickly while protecting researchers and clinicians. Overall, this workflow and computational pipeline allowed for comprehensive immune profiling of 193 inpatients infected with COVID-19, as well as 89 outpatients, 157 patients receiving curbside COVID-19 testing, and 86 healthy controls. We describe a novel electronic framework for biobanking and analyzing patient samples during COVID-19, and present insights and strategies that can be applied more broadly to other biobank studies.
Ward, JD;Cornaby, C;Kato, T;Gilmore, RC;Bunch, D;Miller, MB;Boucher, RC;Schmitz, JL;Askin, FA;Scanga, LR;
PMID: 35512490 | DOI: 10.1016/j.placenta.2022.04.006
The effect of SARS-CoV-2 severity or the trimester of infection in pregnant mothers, placentas, and infants is not fully understood.A retrospective, observational cohort study in Chapel Hill, NC of 115 mothers with SARS-CoV-2 and singleton pregnancies from December 1, 2019 to May 31, 2021 via chart review to document the infants' weight, length, head circumference, survival, congenital abnormalities, hearing loss, maternal complications, and placental pathology classified by the Amsterdam criteria.Of the 115 mothers, 85.2% were asymptomatic (n = 37) or had mild (n = 61) symptoms, 13.0% had moderate (n = 9) or severe (n = 6) COVID-19, and 1.74% (n = 2) did not have symptoms recorded. Moderate and severe maternal infections were associated with increased C-section, premature delivery, infant NICU admission, and were more likely to occur in Type 1 (p = 0.0055) and Type 2 (p = 0.0285) diabetic mothers. Only one infant (0.870%) became infected with SARS-CoV-2, which was not via the placenta. Most placentas (n = 63, 54.8%) did not show specific histologic findings; however, a subset showed mild maternal vascular malperfusion (n = 26, 22.6%) and/or mild microscopic ascending intrauterine infection (n = 28, 24.3%). The infants had no identifiable congenital abnormalities, and all infants and mothers survived.Most mothers and their infants had a routine clinical course; however, moderate and severe COVID-19 maternal infections were associated with pregnancy complications and premature delivery. Mothers with pre-existing, non-gestational diabetes were at greatest risk of developing moderate or severe COVID-19. The placental injury patterns of maternal vascular malperfusion and/or microscopic ascending intrauterine infection were not associated with maternal COVID-19 severity.
SARS-CoV-2 infection of the oral cavity and saliva
Huang, N;Pérez, P;Kato, T;Mikami, Y;Okuda, K;Gilmore, RC;Conde, CD;Gasmi, B;Stein, S;Beach, M;Pelayo, E;Maldonado, JO;Lafont, BA;Jang, SI;Nasir, N;Padilla, RJ;Murrah, VA;Maile, R;Lovell, W;Wallet, SM;Bowman, NM;Meinig, SL;Wolfgang, MC;Choudhury, SN;Novotny, M;Aevermann, BD;Scheuermann, RH;Cannon, G;Anderson, CW;Lee, RE;Marchesan, JT;Bush, M;Freire, M;Kimple, AJ;Herr, DL;Rabin, J;Grazioli, A;Das, S;French, BN;Pranzatelli, T;Chiorini, JA;Kleiner, DE;Pittaluga, S;Hewitt, SM;Burbelo, PD;Chertow, D;NIH COVID-19 Autopsy Consortium, ;HCA Oral and Craniofacial Biological Network, ;Frank, K;Lee, J;Boucher, RC;Teichmann, SA;Warner, BM;Byrd, KM;
PMID: 33767405 | DOI: 10.1038/s41591-021-01296-8
Despite signs of infection-including taste loss, dry mouth and mucosal lesions such as ulcerations, enanthema and macules-the involvement of the oral cavity in coronavirus disease 2019 (COVID-19) is poorly understood. To address this, we generated and analyzed two single-cell RNA sequencing datasets of the human minor salivary glands and gingiva (9 samples, 13,824 cells), identifying 50 cell clusters. Using integrated cell normalization and annotation, we classified 34 unique cell subpopulations between glands and gingiva. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral entry factors such as ACE2 and TMPRSS members were broadly enriched in epithelial cells of the glands and oral mucosae. Using orthogonal RNA and protein expression assessments, we confirmed SARS-CoV-2 infection in the glands and mucosae. Saliva from SARS-CoV-2-infected individuals harbored epithelial cells exhibiting ACE2 and TMPRSS expression and sustained SARS-CoV-2 infection. Acellular and cellular salivary fractions from asymptomatic individuals were found to transmit SARS-CoV-2 ex vivo. Matched nasopharyngeal and saliva samples displayed distinct viral shedding dynamics, and salivary viral burden correlated with COVID-19 symptoms, including taste loss. Upon recovery, this asymptomatic cohort exhibited sustained salivary IgG antibodies against SARS-CoV-2. Collectively, these data show that the oral cavity is an important site for SARS-CoV-2 infection and implicate saliva as a potential route of SARS-CoV-2 transmission.
Gastroenterology Clinics of North America
Meringer, H;Wang, A;Mehandru, S;
| DOI: 10.1016/j.gtc.2022.12.001
The gastrointestinal tract (GI) is targeted by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The present review examines GI involvement in patients with long COVID and discusses the underlying pathophysiological mechanisms that include viral persistence, mucosal and systemic immune dysregulation, microbial dysbiosis, insulin resistance and metabolic abnormalities. Due to the complex and potentially multifactorial nature of this syndrome, rigorous clinical definitions and pathophysiology-based therapeutic approaches are warranted
Molecular Pathology Analysis of SARS-CoV-2 in Syncytiotrophoblast and Hofbauer Cells in Placenta from a Pregnant Woman and Fetus with COVID-19
Pathogens (Basel, Switzerland)
Morotti, D;Cadamuro, M;Rigoli, E;Sonzogni, A;Gianatti, A;Parolin, C;Patanè, L;Schwartz, DA;
PMID: 33920814 | DOI: 10.3390/pathogens10040479
A small number of neonates delivered to women with SARS-CoV-2 infection have been found to become infected through intrauterine transplacental transmission. These cases are associated with a group of unusual placental pathology abnormalities that include chronic histiocytic intervillositis, syncytiotrophoblast necrosis, and positivity of the syncytiotrophoblast for SARS-CoV-2 antigen or RNA. Hofbauer cells constitute a heterogeneous group of immunologically active macrophages that have been involved in transplacental infections that include such viral agents as Zika virus and human immunodeficiency virus. The role of Hofbauer cells in placental infection with SARS-CoV-2 and maternal-fetal transmission is unknown. This study uses molecular pathology techniques to evaluate the placenta from a neonate infected with SARS-CoV-2 via the transplacental route to determine whether Hofbauer cells have evidence of infection. We found that the placenta had chronic histiocytic intervillositis and syncytiotrophoblast necrosis, with the syncytiotrophoblast demonstrating intense positive staining for SARS-CoV-2. Immunohistochemistry using the macrophage marker CD163, SARS-CoV-2 nucleocapsid protein, and double staining for SARS-CoV-2 with RNAscope and anti-CD163 antibody, revealed that no demonstrable virus could be identified within Hofbauer cells, despite these cells closely approaching the basement membrane zone of the infected trophoblast. Unlike some other viruses, there was no evidence from this transmitting placenta for infection of Hofbauer cells with SARS-CoV-2.
Mucker, EM;Brocato, RL;Principe, LM;Kim, RK;Zeng, X;Smith, JM;Kwilas, SA;Kim, S;Horton, H;Caproni, L;Hooper, JW;
PMID: 35891268 | DOI: 10.3390/vaccines10071104
To combat the COVID-19 pandemic, an assortment of vaccines has been developed. Nucleic acid vaccines have the advantage of rapid production, as they only require a viral antigen sequence and can readily be modified to detected viral mutations. Doggybone DNA vaccines targeting the spike protein of SARS-CoV-2 have been generated and compared with a traditionally manufactured, bacterially derived plasmid DNA vaccine that utilizes the same spike sequence. Administered to Syrian hamsters by jet injection at two dose levels, the immunogenicity of both DNA vaccines was compared following two vaccinations. Immunized hamsters were then immunosuppressed and exposed to SARS-CoV-2. Significant differences in body weight were observed during acute infection, and lungs collected at the time of euthanasia had significantly reduced viral RNA, infectious virus, and pathology compared with irrelevant DNA-vaccinated controls. Moreover, immune serum from vaccinated animals was capable of neutralizing SARS-CoV-2 variants of interest and importance in vitro. These data demonstrate the efficacy of a synthetic DNA vaccine approach to protect hamsters from SARS-CoV-2.
Chen, DY;Turcinovic, J;Feng, S;Kenney, DJ;Chin, CV;Choudhary, MC;Conway, HL;Semaan, M;Close, BJ;Tavares, AH;Seitz, S;Khan, N;Kapell, S;Crossland, NA;Li, JZ;Douam, F;Baker, SC;Connor, JH;Saeed, M;
PMID: 37095858 | DOI: 10.1016/j.isci.2023.106634
A simple and robust cell culture system is essential for generating authentic SARS-CoV-2 stocks for evaluation of viral pathogenicity, screening of antiviral compounds, and preparation of inactivated vaccines. Evidence suggests that Vero E6, a cell line commonly used in the field to grow SARS-CoV-2, does not support efficient propagation of new viral variants and triggers rapid cell culture adaptation of the virus. We generated a panel of 17 human cell lines overexpressing SARS-CoV-2 entry factors and tested their ability to support viral infection. Two cell lines, Caco-2/AT and HuH-6/AT, demonstrated exceptional susceptibility, yielding highly concentrated virus stocks. Notably, these cell lines were more sensitive than Vero E6 cells in recovering SARS-CoV-2 from clinical specimens. Further, Caco-2/AT cells provided a robust platform for producing genetically reliable recombinant SARS-CoV-2 through a reverse genetics system. These cellular models are a valuable tool for the study of SARS-CoV-2 and its continuously emerging variants.