Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (232)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • SARS-CoV-2 (113) Apply SARS-CoV-2 filter
  • V-nCoV2019-S (30) Apply V-nCoV2019-S filter
  • SARS-CoV-2  (13) Apply SARS-CoV-2  filter
  • Ace2 (10) Apply Ace2 filter
  • TBD (8) Apply TBD filter
  • V-nCoV2019-orf1ab-sense (5) Apply V-nCoV2019-orf1ab-sense filter
  • SARS-CoV-2 S (5) Apply SARS-CoV-2 S filter
  • CD68 (4) Apply CD68 filter
  • TMPRSS2 (4) Apply TMPRSS2 filter
  • V-nCoV2019-S-sense (4) Apply V-nCoV2019-S-sense filter
  • SARS-CoV-2 spike (4) Apply SARS-CoV-2 spike filter
  • Il-6 (3) Apply Il-6 filter
  • V-nCoV-2019-S (3) Apply V-nCoV-2019-S filter
  • Rbfox3 (2) Apply Rbfox3 filter
  • IL1B (2) Apply IL1B filter
  • IL6 (2) Apply IL6 filter
  • Ifnb1 (2) Apply Ifnb1 filter
  • Sftpc (2) Apply Sftpc filter
  • nCoV2019-S (2) Apply nCoV2019-S filter
  • nCoV2019-S-sense (2) Apply nCoV2019-S-sense filter
  • hACE2 (2) Apply hACE2 filter
  • Cxc19 (2) Apply Cxc19 filter
  • SARS‐CoV‐2 (2) Apply SARS‐CoV‐2 filter
  • SARS- CoV-2 (2) Apply SARS- CoV-2 filter
  • Axin2 (1) Apply Axin2 filter
  • CCL5 (1) Apply CCL5 filter
  • C1qa (1) Apply C1qa filter
  • CFB (1) Apply CFB filter
  • Wnt5a (1) Apply Wnt5a filter
  • KRT18 (1) Apply KRT18 filter
  • Ccl2 (1) Apply Ccl2 filter
  • CXCL10 (1) Apply CXCL10 filter
  • ADCY3 (1) Apply ADCY3 filter
  • Tnf (1) Apply Tnf filter
  • EPCAM (1) Apply EPCAM filter
  • FLT1 (1) Apply FLT1 filter
  • GFAP (1) Apply GFAP filter
  • Omp (1) Apply Omp filter
  • Casp1 (1) Apply Casp1 filter
  • Mpo (1) Apply Mpo filter
  • KIT (1) Apply KIT filter
  • LCN2 (1) Apply LCN2 filter
  • PECAM1 (1) Apply PECAM1 filter
  • MCAM (1) Apply MCAM filter
  • PDGFRA (1) Apply PDGFRA filter
  • PPIB (1) Apply PPIB filter
  • 16SrRNA (1) Apply 16SrRNA filter
  • Cd163 (1) Apply Cd163 filter
  • VWF (1) Apply VWF filter
  • WNT2 (1) Apply WNT2 filter

Product

  • RNAscope (50) Apply RNAscope filter
  • RNAscope 2.5 HD Red assay (48) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent Assay (28) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Brown Assay (24) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (15) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 LS Assay (15) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Duplex (5) Apply RNAscope 2.5 HD Duplex filter
  • TBD (5) Apply TBD filter
  • RNAscope Multiplex Fluorescent v2 (4) Apply RNAscope Multiplex Fluorescent v2 filter
  • BASEscope Assay RED (2) Apply BASEscope Assay RED filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Fluorescent Multiplex Assay (2) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope ISH Probe High Risk HPV (1) Apply RNAscope ISH Probe High Risk HPV filter
  • RNAscope Multiplex fluorescent reagent kit v2 (1) Apply RNAscope Multiplex fluorescent reagent kit v2 filter
  • RNAscope Target Retrieval Reagents (1) Apply RNAscope Target Retrieval Reagents filter

Research area

  • (-) Remove Covid filter Covid (232)
  • Infectious (82) Apply Infectious filter
  • Inflammation (21) Apply Inflammation filter
  • Immunotherapy (11) Apply Immunotherapy filter
  • Neuroscience (9) Apply Neuroscience filter
  • Reproduction (9) Apply Reproduction filter
  • Infectious Disease (6) Apply Infectious Disease filter
  • Vaccine (5) Apply Vaccine filter
  • Vaccines (5) Apply Vaccines filter
  • Lung (4) Apply Lung filter
  • Neuroinflammation (3) Apply Neuroinflammation filter
  • Alzheimer's Disease (2) Apply Alzheimer's Disease filter
  • Heart (2) Apply Heart filter
  • Heart Disease (2) Apply Heart Disease filter
  • Long Covid (2) Apply Long Covid filter
  • Other: Methods (2) Apply Other: Methods filter
  • Adrenal (1) Apply Adrenal filter
  • Bioinformatics (1) Apply Bioinformatics filter
  • Cancer (1) Apply Cancer filter
  • chimeric VLP-based Vaccine (1) Apply chimeric VLP-based Vaccine filter
  • COVID-19-associated pulmonary aspergillosis (1) Apply COVID-19-associated pulmonary aspergillosis filter
  • Equine coronavirus (1) Apply Equine coronavirus filter
  • Fibrosis (1) Apply Fibrosis filter
  • Immunology (1) Apply Immunology filter
  • Immunothearpy (1) Apply Immunothearpy filter
  • Infammation (1) Apply Infammation filter
  • Infectious Disease: influenza-associated pulmonary aspergillosis (1) Apply Infectious Disease: influenza-associated pulmonary aspergillosis filter
  • Infectious Disease: influenza-associated pulmonary aspergillosis (1) Apply Infectious Disease: influenza-associated pulmonary aspergillosis filter
  • Infectiouse Disease: Flu (1) Apply Infectiouse Disease: Flu filter
  • Influenza (1) Apply Influenza filter
  • Long-Covid (1) Apply Long-Covid filter
  • Lung fibrosis (1) Apply Lung fibrosis filter
  • Organ transplant (1) Apply Organ transplant filter
  • Other: Lung (1) Apply Other: Lung filter
  • pharmacotherapy (1) Apply pharmacotherapy filter
  • Pulmonary disease (1) Apply Pulmonary disease filter
  • Reproductive Biology (1) Apply Reproductive Biology filter
  • Respiratory Disease (1) Apply Respiratory Disease filter
  • Sex Differences (1) Apply Sex Differences filter
  • Thyroid (1) Apply Thyroid filter
  • Tuberculosis (1) Apply Tuberculosis filter
  • Vaccine-associated enhanced respiratory disease (1) Apply Vaccine-associated enhanced respiratory disease filter
  • Vaccines Associated Hepatitis (1) Apply Vaccines Associated Hepatitis filter

Category

  • Publications (232) Apply Publications filter
Perspectives and potential approaches for targeting neuropilin 1 in SARS-CoV-2 infection

Molecular medicine (Cambridge, Mass.)

2021 Dec 27

Chapoval, SP;Keegan, AD;
PMID: 34961486 | DOI: 10.1186/s10020-021-00423-y

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel type b coronavirus responsible for the COVID-19 pandemic. With over 224 million confirmed infections with this virus and more than 4.6 million people dead because of it, it is critically important to define the immunological processes occurring in the human response to this virus and pathogenetic mechanisms of its deadly manifestation. This perspective focuses on the contribution of the recently discovered interaction of SARS-CoV-2 Spike protein with neuropilin 1 (NRP1) receptor, NRP1 as a virus entry receptor for SARS-CoV-2, its role in different physiologic and pathologic conditions, and the potential to target the Spike-NRP1 interaction to combat virus infectivity and severe disease manifestations.
Pandemic chilblains: Are they SARS-CoV-2-related or not?

Clinical immunology (Orlando, Fla.)

2022 Mar 23

De Greef, A;Coulie, PG;Baeck, M;
PMID: 35338000 | DOI: 10.1016/j.clim.2022.108984

The exact etiopathology of chilblains observed during the Coronavirus Disease 2019 (COVID-19) pandemic is still unclear. Initially, SARS-CoV-2 appeared as the obvious causing agent, but two years of various investigations have failed to convincingly support its direct implication. Most affected individuals have no detectable virus, no anti-SARS-CoV-2 antibodies and no symptoms of COVID-19. Analyses of skin biopsies similarly failed to unambiguously demonstrate presence of the virus or its genome. In a recent hypothesis, SARS-CoV-2 would cause the lesions before being promptly eliminated by unusually strong type I interferon responses. With others, we feel that environmental factors have not been sufficiently considered, in particular cold exposure related to unprecedented containment measures. The cause of pandemic chilblains remains a stimulating puzzle which warrants further investigation.
SARS-CoV-2 infection in hamsters and humans results in lasting and unique systemic perturbations post recovery

Science Translational Medicine

2022 Jun 07

Frere, J;Serafini, R;Pryce, K;Zazhytska, M;Oishi, K;Golynker, I;Panis, M;Zimering, J;Horiuchi, S;Hoagland, D;Møller, R;Ruiz, A;Kodra, A;Overdevest, J;Canoll, P;Borczuk, A;Chandar, V;Bram, Y;Schwartz, R;Lomvardas, S;Zachariou, V;tenOever, B;
| DOI: 10.1126/scitranslmed.abq3059

The host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in prolonged pathologies collectively referred to as post-acute sequalae of COVID-19 (PASC) or long COVID. To better understand the mechanism underlying long COVID biology, we compared the short- and long-term systemic responses in the golden hamster following either SARS-CoV-2 or influenza A virus (IAV) infection. Results demonstrated that SARS-CoV-2 exceeded IAV in its capacity to cause permanent injury to the lung and kidney and uniquely impacted the olfactory bulb (OB) and epithelium (OE). Despite a lack of detectable infectious virus, the OB and OE demonstrated myeloid and T cell activation, proinflammatory cytokine production, and an interferon response that correlated with behavioral changes extending a month post viral clearance. These sustained transcriptional changes could also be corroborated from tissue isolated from individuals who recovered from COVID-19. These data highlight a molecular mechanism for persistent COVID-19 symptomology and provide a small animal model to explore future therapeutics.
The Omicron Sub-Variant BA.4 Displays a Remarkable Lack of Clinical Signs in a Golden Syrian Hamster Model of SARS-CoV-2 Infection

Viruses

2023 May 10

Davies, ER;Ryan, KA;Bewley, KR;Coombes, NS;Salguero, FJ;Carnell, OT;Biddlecombe, S;Charlton, M;Challis, A;Cross, ES;Handley, A;Ngabo, D;Weldon, TM;Hall, Y;Funnell, SGP;
PMID: 37243219 | DOI: 10.3390/v15051133

The ongoing emergence of SARS-CoV-2 virus variants remains a source of concern because it is accompanied by the potential for increased virulence as well as evasion of immunity. Here we show that, although having an almost identical spike gene sequence as another Omicron variant (BA.5.2.1), a BA.4 isolate lacked all the typical disease characteristics of other isolates seen in the Golden Syrian hamster model despite replicating almost as effectively. Animals infected with BA.4 had similar viral shedding profiles to those seen with BA.5.2.1 (up to day 6 post-infection), but they all failed to lose weight or present with any other significant clinical signs. We hypothesize that this lack of detectable signs of disease during infection with BA.4 was due to a small (nine nucleotide) deletion (∆686-694) in the viral genome (ORF1ab) responsible for the production of non-structural protein 1, which resulted in the loss of three amino acids (aa 141-143).
Blood-brain barrier penetration of non-replicating SARS-CoV-2 and S1 Variants of Concern induce neuroinflammation which is accentuated in a mouse model of Alzheimer's disease

Brain, behavior, and immunity

2023 Jan 19

Erickson, MA;Logsdon, AF;Rhea, EM;Hansen, KM;Holden, SJ;Banks, WA;Smith, JL;German, C;Farr, SA;Morley, JE;Weaver, RR;Hirsch, AJ;Kovac, A;Kontsekova, E;Baumann, KK;Omer, MA;Raber, J;
PMID: 36682515 | DOI: 10.1016/j.bbi.2023.01.010

COVID-19 and especially Long COVID are associated with severe CNS symptoms and may place persons at risk to develop long-term cognitive impairments. Here, we show that two non-infective models of SARS-CoV-2 can cross the blood-brain barrier (BBB) and induce neuroinflammation, a major mechanism underpinning CNS and cognitive impairments, even in the absence of productive infection. The viral models cross the BBB by the mechanism of adsorptive transcytosis with the sugar N-acetylglucosamine being key. The delta and omicron variants cross the BBB faster than the other variants of concern, with peripheral tissue uptake rates also differing for the variants. Neuroinflammation induced by icv injection of S1 protein was greatly enhanced in young and especially in aged SAMP8 mice, a model of Alzheimer's disease, whereas sex and obesity had little effect.
A Potential Novel Treatment for Chronic Cough in Long COVID Patients: Clearance of Epipharyngeal Residual SARS-CoV-2 Spike RNA by Epipharyngeal Abrasive Therapy

Cureus

2023 Jan 01

Nishi, K;Yoshimoto, S;Tanaka, T;Kimura, S;Shinchi, Y;Yamano, T;
PMID: 36618501 | DOI: 10.7759/cureus.33421

A major target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the epipharyngeal mucosa. Epipharyngeal abrasive therapy (EAT) is a Japanese treatment for chronic epipharyngitis. EAT is a treatment for chronic epipharyngitis in Japan that involves applying zinc chloride as an anti-inflammatory agent to the epipharyngeal mucosa. Here, we present a case of a 21-year-old man with chronic coughing that persisted for four months after a diagnosis of mild coronavirus disease 2019 (COVID-19), who was treated by EAT. We diagnosed chronic epipharyngitis as the cause of the chronic cough after the SARS-CoV-2 infection. SARS-CoV-2 spike RNA had persisted in the epipharyngeal mucosa of this Long COVID patient. EAT was performed once a week for three months, which eliminated residual SARS-CoV-2 RNA and reduced epipharyngeal inflammation. Moreover, a reduction in the expression of proinflammatory cytokines was found by histopathological examination. We speculate that the virus was excreted with the drainage induced by EAT, which stopped the secretion of proinflammatory cytokines. This case study suggests that EAT is a useful treatment for chronic epipharyngitis involving long COVID.
Intranasal delivery of a rationally attenuated SARS-CoV-2 is immunogenic and protective in Syrian hamsters

Nature communications

2022 Nov 10

Liu, S;Stauft, CB;Selvaraj, P;Chandrasekaran, P;D'Agnillo, F;Chou, CK;Wu, WW;Lien, CZ;Meseda, CA;Pedro, CL;Starost, MF;Weir, JP;Wang, TT;
PMID: 36357440 | DOI: 10.1038/s41467-022-34571-4

Few live attenuated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are in pre-clinical or clinical development. We seek to attenuate SARS-CoV-2 (isolate WA1/2020) by removing the polybasic insert within the spike protein and the open reading frames (ORFs) 6-8, and by introducing mutations that abolish non-structural protein 1 (Nsp1)-mediated toxicity. The derived virus (WA1-ΔPRRA-ΔORF6-8-Nsp1K164A/H165A) replicates to 100- to 1000-fold-lower titers than the ancestral virus and induces little lung pathology in both K18-human ACE2 (hACE2) transgenic mice and Syrian hamsters. Immunofluorescence and transcriptomic analyses of infected hamsters confirm that three-pronged genetic modifications attenuate the proinflammatory pathways more than the removal of the polybasic cleavage site alone. Finally, intranasal administration of just 100 PFU of the WA1-ΔPRRA-ΔORF6-8-Nsp1K164A/H165A elicits robust antibody responses in Syrian hamsters and protects against SARS-CoV-2-induced weight loss and pneumonia. As a proof-of-concept study, we demonstrate that live but sufficiently attenuated SARS-CoV-2 vaccines may be attainable by rational design.
Vaccine-associated enhanced respiratory pathology in COVID-19 hamsters after TH2-biased immunization

Cell reports

2022 Aug 16

Ebenig, A;Muraleedharan, S;Kazmierski, J;Todt, D;Auste, A;Anzaghe, M;Gömer, A;Postmus, D;Gogesch, P;Niles, M;Plesker, R;Miskey, C;Gellhorn Serra, M;Breithaupt, A;Hörner, C;Kruip, C;Ehmann, R;Ivics, Z;Waibler, Z;Pfaender, S;Wyler, E;Landthaler, M;Kupke, A;Nouailles, G;Goffinet, C;Brown, RJP;Mühlebach, MD;
PMID: 35952673 | DOI: 10.1016/j.celrep.2022.111214

Vaccine-associated enhanced respiratory disease (VAERD) is a severe complication for some respiratory infections. To investigate the potential for VAERD induction in coronavirus disease 2019 (COVID-19), we evaluate two vaccine leads utilizing a severe hamster infection model: a T helper type 1 (TH1)-biased measles vaccine-derived candidate and a TH2-biased alum-adjuvanted, non-stabilized spike protein. The measles virus (MeV)-derived vaccine protects the animals, but the protein lead induces VAERD, which can be alleviated by dexamethasone treatment. Bulk transcriptomic analysis reveals that our protein vaccine prepares enhanced host gene dysregulation in the lung, exclusively up-regulating mRNAs encoding the eosinophil attractant CCL-11, TH2-driving interleukin (IL)-19, or TH2 cytokines IL-4, IL-5, and IL-13. Single-cell RNA sequencing (scRNA-seq) identifies lung macrophages or lymphoid cells as sources, respectively. Our findings imply that VAERD is caused by the concerted action of hyperstimulated macrophages and TH2 cytokine-secreting lymphoid cells and potentially links VAERD to antibody-dependent enhancement (ADE). In summary, we identify the cytokine drivers and cellular contributors that mediate VAERD after TH2-biased vaccination.
SARS-CoV-2 infection produces chronic pulmonary epithelial and immune cell dysfunction with fibrosis in mice

Science translational medicine

2022 Jul 07

Dinnon, KH;Leist, SR;Okuda, K;Dang, H;Fritch, EJ;Gully, KL;De la Cruz, G;Evangelista, MD;Asakura, T;Gilmore, RC;Hawkins, P;Nakano, S;West, A;Schäfer, A;Gralinski, LE;Everman, JL;Sajuthi, SP;Zweigart, MR;Dong, S;McBride, J;Cooley, MR;Hines, JB;Love, MK;Groshong, SD;VanSchoiack, A;Phelan, SJ;Liang, Y;Hether, T;Leon, M;Zumwalt, RE;Barton, LM;Duval, EJ;Mukhopadhyay, S;Stroberg, E;Borczuk, A;Thorne, LB;Sakthivel, MK;Lee, YZ;Hagood, JS;Mock, JR;Seibold, MA;O'Neal, WK;Montgomery, SA;Boucher, RC;Baric, RS;
PMID: 35857635 | DOI: 10.1126/scitranslmed.abo5070

A subset of individuals who recover from coronavirus disease 2019 (COVID-19) develop post-acute sequelae of SARS-CoV-2 (PASC), but the mechanistic basis of PASC-associated lung abnormalities suffers from a lack of longitudinal tissue samples. The mouse-adapted severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain MA10 produces an acute respiratory distress syndrome (ARDS) in mice similar to humans. To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute to clinical recovery phases. At 15 to 120 days post-virus clearance, pulmonary histologic findings included subpleural lesions composed of collagen, proliferative fibroblasts, and chronic inflammation, including tertiary lymphoid structures. Longitudinal spatial transcriptional profiling identified global reparative and fibrotic pathways dysregulated in diseased regions, similar to human COVID-19. Populations of alveolar intermediate cells, coupled with focal up-regulation of pro-fibrotic markers, were identified in persistently diseased regions. Early intervention with antiviral EIDD-2801 reduced chronic disease, and early anti-fibrotic agent (nintedanib) intervention modified early disease severity. This murine model provides opportunities to identify pathways associated with persistent SARS-CoV-2 pulmonary disease and test countermeasures to ameliorate PASC.
SARS-CoV-2 can infect and propagate in human placenta explants

Cell reports. Medicine

2021 Nov 04

Fahmi, A;Brügger, M;Démoulins, T;Zumkehr, B;Oliveira Esteves, BI;Bracher, L;Wotzkow, C;Blank, F;Thiel, V;Baud, D;Alves, MP;
PMID: 34751258 | DOI: 10.1016/j.xcrm.2021.100456

The ongoing SARS-CoV-2 pandemic continues to lead to high morbidity and mortality. During pregnancy, severe maternal and neonatal outcomes and placental pathological changes have been described. We evaluate SARS-CoV-2 infection at the maternal-fetal interface using precision-cut slices (PCSs) of human placenta. Remarkably, exposure of placenta PCSs to SARS-CoV-2 leads to a full replication cycle with infectious virus release. Moreover, the susceptibility of placental tissue to SARS-CoV-2 replication relates to the expression levels of ACE2. Viral proteins and/or RNA are detected in syncytiotrophoblast, cytotrophoblasts, villous stroma, and possibly Hofbauer cells. While SARS-CoV-2 infection of placenta PCSs does not cause a detectable cytotoxicity nor a pro-inflammatory cytokine response, an upregulation of one order of magnitude of interferon type III transcripts is measured. In conclusion, our data demonstrate the capacity of SARS-CoV-2 to infect and propagate in human placenta and constitute a basis for further investigation of SARS-CoV-2 biology at the maternal-fetal interface.
Liver histopathology in COVID-19 patients: A mono-Institutional series of liver biopsies and autopsy specimens

Pathology, research and practice

2021 Apr 19

Fassan, M;Mescoli, C;Sbaraglia, M;Guzzardo, V;Russo, FP;Fabris, R;Trevenzoli, M;Pelizzaro, F;Cattelan, AM;Basso, C;Navalesi, P;Farinati, F;Vettor, R;Dei Tos, AP;
PMID: 33932720 | DOI: 10.1016/j.prp.2021.153451

Few studies have focused on COVID-19 patients' hepatic histopathological features. Many of the described morphological landscapes are non-specific and possibly due to other comorbidities or to Sars-CoV-2-related therapies. We describe the hepatic histopathological findings of 3 liver biopsies obtained from living COVID-19 patients in which active SARS-CoV-2 infection was molecularly confirmed and biopsied because of significant alterations of liver function tests and 25 livers analyzed during COVID-19-related autopsies. Main histopathological findings were (i) the absence of significant biliary tree or vascular damages, (ii) mild/absent lymphocytic hepatitis; (iii) activation of (pigmented) Kupffer cells, (iv) hepatocellular regenerative changes, (v) the presence of steatosis, (vi) sinusoidal ectasia, micro-thrombosis and acinar atrophy in autopsy specimens No viral particle actively infecting the hepatic or endothelial cells was detected at in situ hybridization. The morphological features observed within the hepatic parenchyma are not specific and should be considered as the result of an indirect insult resulting from the viral infection or the adopted therapeutic protocols.
A SARS-CoV-2 and influenza double hit vaccine based on RBD-conjugated inactivated influenza A virus

Science advances

2023 Jun 23

Wang, Z;Li, Z;Shi, W;Zhu, D;Hu, S;Dinh, PC;Cheng, K;
PMID: 37352360 | DOI: 10.1126/sciadv.abo4100

The circulating flu viruses merging with the ongoing COVID-19 pandemic raises a more severe threat that promotes the infectivity of SARS-CoV-2 associated with higher mortality rates. Here, we conjugated recombinant receptor binding domain (RBD) of SARS-CoV-2 spike protein onto inactivated influenza A virus (Flu) to develop a SARS-CoV-2 virus-like particle (VLP) vaccine with two-hit protection. This double-hit vaccine (Flu-RBD) not only induced protective immunities against SARS-CoV-2 but also remained functional as a flu vaccine. The Flu core improved the retention and distribution of Flu-RBD vaccine in the draining lymph nodes, with enhanced immunogenicity. In a hamster model of live SARS-CoV-2 infection, two doses of Flu-RBD efficiently protected animals against viral infection. Furthermore, Flu-RBD VLP elicited a strong neutralization activity against both SARS-CoV-2 Delta pseudovirus and wild-type influenza A H1N1 inactivated virus in mice. Overall, the Flu-RBD VLP vaccine is a promising candidate for combating COVID-19, influenza A, and coinfection.

Pages

  • « first
  • ‹ previous
  • …
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?