Sodagar, A;Javed, R;Tahir, H;Razak, SIA;Shakir, M;Naeem, M;Yusof, AHA;Sagadevan, S;Hazafa, A;Uddin, J;Khan, A;Al-Harrasi, A;
PMID: 35883527 | DOI: 10.3390/biom12070971
The number of deaths has been increased due to COVID-19 infections and uncertain neurological complications associated with the central nervous system. Post-infections and neurological manifestations in neuronal tissues caused by COVID-19 are still unknown and there is a need to explore how brainstorming promoted congenital impairment, dementia, and Alzheimer's disease. SARS-CoV-2 neuro-invasion studies in vivo are still rare, despite the fact that other beta-coronaviruses have shown similar properties. Neural (olfactory or vagal) and hematogenous (crossing the blood-brain barrier) pathways have been hypothesized in light of new evidence showing the existence of SARS-CoV-2 host cell entry receptors into the specific components of human nerve and vascular tissue. Spike proteins are the primary key and structural component of the COVID-19 that promotes the infection into brain cells. Neurological manifestations and serious neurodegeneration occur through the binding of spike proteins to ACE2 receptor. The emerging evidence reported that, due to the high rate in the immediate wake of viral infection, the olfactory bulb, thalamus, and brain stem are intensely infected through a trans-synaptic transfer of the virus. It also instructs the release of chemokines, cytokines, and inflammatory signals immensely to the blood-brain barrier and infects the astrocytes, which causes neuroinflammation and neuron death; and this induction of excessive inflammation and immune response developed in more neurodegeneration complications. The present review revealed the pathophysiological effects, molecular, and cellular mechanisms of possible entry routes into the brain, pathogenicity of autoantibodies and emerging immunotherapies against COVID-19.
Herder, V;Dee, K;Wojtus, JK;Epifano, I;Goldfarb, D;Rozario, C;Gu, Q;Da Silva Filipe, A;Nomikou, K;Nichols, J;Jarrett, RF;Stevenson, A;McFarlane, S;Stewart, ME;Szemiel, AM;Pinto, RM;Masdefiol Garriga, A;Davis, C;Allan, J;Graham, SV;Murcia, PR;Boutell, C;
PMID: 34932557 | DOI: 10.1371/journal.pbio.3001065
The pandemic spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19), represents an ongoing international health crisis. A key symptom of SARS-CoV-2 infection is the onset of fever, with a hyperthermic temperature range of 38 to 41°C. Fever is an evolutionarily conserved host response to microbial infection that can influence the outcome of viral pathogenicity and regulation of host innate and adaptive immune responses. However, it remains to be determined what effect elevated temperature has on SARS-CoV-2 replication. Utilizing a three-dimensional (3D) air-liquid interface (ALI) model that closely mimics the natural tissue physiology of SARS-CoV-2 infection in the respiratory airway, we identify tissue temperature to play an important role in the regulation of SARS-CoV-2 infection. Respiratory tissue incubated at 40°C remained permissive to SARS-CoV-2 entry but refractory to viral transcription, leading to significantly reduced levels of viral RNA replication and apical shedding of infectious virus. We identify tissue temperature to play an important role in the differential regulation of epithelial host responses to SARS-CoV-2 infection that impact upon multiple pathways, including intracellular immune regulation, without disruption to general transcription or epithelium integrity. We present the first evidence that febrile temperatures associated with COVID-19 inhibit SARS-CoV-2 replication in respiratory epithelia. Our data identify an important role for tissue temperature in the epithelial restriction of SARS-CoV-2 independently of canonical interferon (IFN)-mediated antiviral immune defenses.
Chen, J;Du, L;Wang, F;Shao, X;Wang, X;Yu, W;Bi, S;Chen, D;Pan, X;Zeng, S;Huang, L;Liang, Y;Li, Y;Chen, R;Xue, F;Li, X;Wang, S;Zhuang, M;Liu, M;Lin, L;Yan, H;He, F;Yu, L;Jiang, Q;Xiong, Z;Zhang, L;Cao, B;Wang, YL;Chen, D;
PMID: 35141964 | DOI: 10.1111/cpr.13204
The impacts of the current COVID-19 pandemic on maternal and foetal health are enormous and of serious concern. However, the influence of SARS-CoV-2 infection at early-to-mid gestation on maternal and foetal health remains unclear.Here, we report the follow-up study of a pregnant woman of her whole infective course of SARS-CoV-2, from asymptomatic infection at gestational week 20 to mild and then severe illness state, and finally cured at Week 24. Following caesarean section due to incomplete uterine rupture at Week 28, histological examinations on the placenta and foetal tissues as well as single-cell RNA sequencing (scRNA-seq) for the placenta were performed.Compared with the gestational age-matched control placentas, the placenta from this COVID-19 case exhibited more syncytial knots and lowered expression of syncytiotrophoblast-related genes. The scRNA-seq analysis demonstrated impaired trophoblast differentiation, activation of antiviral and inflammatory CD8 T cells, as well as the tight association of increased inflammatory responses in the placenta with complement over-activation in macrophages. In addition, levels of several inflammatory factors increased in the placenta and foetal blood.These findings illustrate a systematic cellular and molecular signature of placental insufficiency and immune activation at the maternal-foetal interface that may be attributed to SARS-CoV-2 infection at the midgestation stage, which highly suggests the extensive care for maternal and foetal outcomes in pregnant women suffering from COVID-19.
bioRxiv : the preprint server for biology
Jiang, L;Driedonks, TAP;Jong, WSP;Dhakal, S;van den Berg van Saparoea, HB;Sitaras, I;Zhou, R;Caputo, C;Littlefield, K;Lowman, M;Chen, M;Lima, G;Gololobova, O;Smith, B;Mahairaki, V;Richardson, MR;Mulka, KR;Lane, AP;Klein, SL;Pekosz, A;Brayton, CF;Mankowski, JL;Luirink, J;Villano, JS;Witwer, KW;
PMID: 35132418 | DOI: 10.1101/2021.06.28.450181
Several vaccines have been introduced to combat the coronavirus infectious disease-2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current SARS-CoV-2 vaccines include mRNA-containing lipid nanoparticles or adenoviral vectors that encode the SARS-CoV-2 Spike (S) protein of SARS-CoV-2, inactivated virus, or protein subunits. Despite growing success in worldwide vaccination efforts, additional capabilities may be needed in the future to address issues such as stability and storage requirements, need for vaccine boosters, desirability of different routes of administration, and emergence of SARS-CoV-2 variants such as the Delta variant. Here, we present a novel, well-characterized SARS-CoV-2 vaccine candidate based on extracellular vesicles (EVs) of Salmonella typhimurium that are decorated with the mammalian cell culture-derived Spike receptor-binding domain (RBD). RBD-conjugated outer membrane vesicles (RBD-OMVs) were used to immunize the golden Syrian hamster ( Mesocricetus auratus ) model of COVID-19. Intranasal immunization resulted in high titers of blood anti-RBD IgG as well as detectable mucosal responses. Neutralizing antibody activity against wild-type and Delta variants was evident in all vaccinated subjects. Upon challenge with live virus, hamsters immunized with RBD-OMV, but not animals immunized with unconjugated OMVs or a vehicle control, avoided body mass loss, had lower virus titers in bronchoalveolar lavage fluid, and experienced less severe lung pathology. Our results emphasize the value and versatility of OMV-based vaccine approaches.
Brain : a journal of neurology
Lee, MH;Perl, DP;Steiner, J;Pasternack, N;Li, W;Maric, D;Safavi, F;Horkayne-Szakaly, I;Jones, R;Stram, MN;Moncur, JT;Hefti, M;Folkerth, RD;Nath, A;
PMID: 35788639 | DOI: 10.1093/brain/awac151
The underlying mechanisms by which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to acute and long-term neurological manifestations remains obscure. We aimed to characterize the neuropathological changes in patients with coronavirus disease 2019 and determine the underlying pathophysiological mechanisms. In this autopsy study of the brain, we characterized the vascular pathology, the neuroinflammatory changes and cellular and humoral immune responses by immunohistochemistry. All patients died during the first wave of the pandemic from March to July 2020. All patients were adults who died after a short duration of the infection, some had died suddenly with minimal respiratory involvement. Infection with SARS-CoV-2 was confirmed on ante-mortem or post-mortem testing. Descriptive analysis of the pathological changes and quantitative analyses of the infiltrates and vascular changes were performed. All patients had multifocal vascular damage as determined by leakage of serum proteins into the brain parenchyma. This was accompanied by widespread endothelial cell activation. Platelet aggregates and microthrombi were found adherent to the endothelial cells along vascular lumina. Immune complexes with activation of the classical complement pathway were found on the endothelial cells and platelets. Perivascular infiltrates consisted of predominantly macrophages and some CD8+ T cells. Only rare CD4+ T cells and CD20+ B cells were present. Astrogliosis was also prominent in the perivascular regions. Microglial nodules were predominant in the hindbrain, which were associated with focal neuronal loss and neuronophagia. Antibody-mediated cytotoxicity directed against the endothelial cells is the most likely initiating event that leads to vascular leakage, platelet aggregation, neuroinflammation and neuronal injury. Therapeutic modalities directed against immune complexes should be considered.
Stenton, S;McPartland, J;Shukla, R;Turner, K;Marton, T;Hargitai, B;Bamber, A;Pryce, J;Peres, CL;Burguess, N;Wagner, B;Ciolka, B;Simmons, W;Hurrell, D;Sekar, T;Moldovan, C;Trayers, C;Bryant, V;Palm, L;Cohen, MC;
PMID: 35465646 | DOI: 10.1016/j.eclinm.2022.101389
Pregnant women with SARS-CoV-2 infection experience higher rates of stillbirth and preterm birth. A unique pattern of chronic histiocytic intervillositis (CHI) and/or massive perivillous fibrin deposition (MPFD) has emerged, coined as SARS-CoV-2 placentitis.The aim of this study was to describe a cohort of placentas diagnosed with SARS-CoV-2 placentitis during October 2020-March 2021. Cases with a histological diagnosis of SARS-CoV-2 placentitis and confirmatory immunohistochemistry were reported. Maternal demographic data, pregnancy outcomes and placental findings were collected.59 mothers delivered 61 infants with SARS-CoV-2 placentitis. The gestational age ranged from 19 to 41 weeks with most cases (78.6%) being third trimester. 30 infants (49.1%) were stillborn or late miscarriages. Obese mothers had higher rates of pregnancy loss when compared with those with a BMI <30 [67% (10/15) versus 41% (14/34)]. 47/59 (79.7%) mothers had a positive SARS-CoV-2 PCR test either at the time of labour or in the months before, of which 12 (25.5%) were reported to be asymptomatic. Ten reported only CHI, two cases showed MPFD only and in 48 placentas both CHI and MPFD was described.SARS-CoV2 placentitis is a distinct entity associated with increased risk of pregnancy loss, particularly in the third trimester. Women can be completely asymptomatic and still experience severe placentitis. Unlike 'classical' MPFD, placentas with SARS-CoV-2 are generally normal in size with adequate fetoplacental weight ratios. Further work should establish the significance of the timing of maternal SARS-CoV-2 infection and placentitis, the significance of SARS-CoV2 variants, and rates of vertical transmission associated with this pattern of placental inflammation.There was not funding associated with this study.
Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases
Almamlouk, R;Kashour, T;Obeidat, S;Bois, MC;Maleszewski, JJ;Omrani, OA;Tleyjeh, R;Berbari, E;Chakhachiro, Z;Zein-Sabatto, B;Gerberi, D;Tleyjeh, IM;Cardiac Autopsy in COVID-19 Study Group, ;
PMID: 35339672 | DOI: 10.1016/j.cmi.2022.03.021
Many post-mortem studies addressing the cardiovascular effects of COVID-19 provided valuable information but were limited by their small sample size.The aim of this systematic review is to better understand the various aspects of the cardiovascular complications of COVID-19 by pooling data from a large number of autopsy studies.We searched online databases Ovid EBM Reviews, Ovid Embase, Ovid Medline, Scopus and Web of Science for the concepts of autopsy or histopathology combined with COVID-19 published between database inception to February 2021. We also searched for unpublished manuscripts using the medRxiv services operated by Cold Spring Harbor Laboratory.Articles were considered eligible for inclusion if they reported human post-mortem cardiovascular findings among individuals with confirmed SARS-CoV-2 infection.Studies were individually assessed for risk of selection bias, detection bias and reporting bias.Median prevalence of different autopsy findings with associated interquartile ranges.This review cohort contained 50 studies including 548 hearts. The median age of the deceased was 69 years. The most prevalent acute cardiovascular findings were myocardial necrosis (median=100.0%, IQR 20-100%, number of studies=9, number of patients=64) and myocardial edema (median=55.5%, IQR 19.5-92.5%, number of studies=4, number of patients=46). Median reported prevalence's of extensive, focal active and multifocal myocarditis were all 0.0%. The most prevalent chronic changes were myocyte hypertrophy (median=69.0%, IQR 46.8-92.1%) and fibrosis (median=35.0%, IQR 35.0-90.5%). SARS-CoV-2 was detected in the myocardium with median prevalence of 60.8% (IQR 40.4-95.6%).Our systematic review confirmed the high prevalence of acute and chronic cardiac pathologies in COVID-19, SARS-CoV-2 cardiac tropism, and the low prevalence of myocarditis in COVID-19 disease.
Kidney international reports
Xu, K;Shang, N;Levitman, A;Corker, A;Kudose, S;Yaeh, A;Neupane, U;Stevens, J;Sampogna, R;Mills, AM;D'Agati, V;Mohan, S;Kiryluk, K;Barasch, J;
PMID: 34642645 | DOI: 10.1016/j.ekir.2021.09.005
Loss of kidney function is a common feature of COVID-19 infection, but serum creatinine (SCr) is not a sensitive or specific marker of kidney injury. We tested whether molecular biomarkers of tubular injury measured at hospital admission were associated with AKI in those with COVID-19 infection.This is a prospective cohort observational study consisting of 444 consecutive SARS-CoV-2 patients enrolled in the Columbia University Emergency Department at the peak of New York's pandemic (March-April 2020). Urine and blood were collected simultaneously at hospital admission (median time: day 0, IQR 0-2 days) and urine biomarkers analyzed by ELISA and by a novel dipstick. Kidney biopsies were probed for biomarker RNA and for histopathologic acute tubular injury (ATI) scores.Admission uNGAL was associated with AKI diagnosis (267±301 vs. 96±139 ng/mL, P < 0.0001) and staging; uNGAL levels >150ng/mL demonstrated 80% specificity and 75% sensitivity to diagnose AKI-stage 2-3. Admission uNGAL quantitatively associated with prolonged AKI, dialysis, shock, prolonged hospitalization, and in-hospital death, even when admission SCr was not elevated. The risk of dialysis increased almost 4-fold per standard deviation of uNGAL independently of baseline SCr, co-morbidities, and proteinuria [OR(95%CI): 3.59 (1.83-7.45), P < 0.001]. In COVID-19 kidneys, NGAL mRNA expression broadened in parallel with severe histopathological injury (ATI). Conversely, low uNGAL levels at admission ruled out stage 2-3 AKI (NPV 0.95, 95%CI: 0.92-0.97) and the need for dialysis (NPV: 0.98, 95%CI: 0.96-0.99)). While proteinuria and uKIM-1 implicated tubular injury, neither were diagnostic of AKI stages.In COVID-19 patients, uNGAL quantitatively associated with histopathological injury (ATI), the loss of kidney function (AKI), and the severity of patient outcomes.
Primard, C;Monchâtre-Leroy, E;Del Campo, J;Valsesia, S;Nikly, E;Chevandier, M;Boué, F;Servat, A;Wasniewski, M;Picard-Meyer, E;Courant, T;Collin, N;Salguero, F;Le Vert, A;Guyon-Gellin, D;Nicolas, F;
| DOI: 10.3389/fimmu.2023.1188605
Spike-based COVID-19 vaccines induce potent neutralizing antibodies but their efficacy against SARS-CoV-2 variants decreases. OVX033 is a recombinant protein composed of the full-length nucleocapsid (N) protein of SARS-CoV-2 genetically fused to oligoDOM , a self-assembling domain which improves antigen immunogenicity. OVX033 including N as an antigenic target is proposed as new vaccine candidate providing broad-spectrum protection against sarbecoviruses. OVX033 demonstrated its ability to trigger cross-reactive T cell responses and cross-protection against three variants of SARS-CoV-2 (B.1 Europe, Delta B.1.617.2, and Omicron B.1.1.529) in a hamster challenge model, as evidenced by lower weight loss, lower lung viral loads, and reduced lung histopathological lesions.
Case reports in pathology
Butler, JT;Chellappan, R;Litovsky, S;Leal, SM;Benson, PV;
PMID: 37180570 | DOI: 10.1155/2023/9998749
While rare, coronary stent infections present with significant mortality-with most infections and further complications occurring within months of percutaneous coronary intervention (PCI). Here, we discuss a post-COVID-19 patient who presented approximately one year after PCI for declotting of an arteriovenous graft (AVG). Upon admission, the patient was found to be bacteremic with multilobar pneumonia and an infection of the AVG. Empiric antibiotics were started, and blood cultures were subsequently positive for MRSA. Removal of the AVG was unsuccessful, and two days after admission, the patient passed. Autopsy revealed a perivascular abscess in the RCA near the origin of the stent with a ground section of the RCA with stent revealing abundant calcific atherosclerosis and marked necrosis of the artery wall. The cause of death was determined to be sepsis complicating coronary artery disease and chronic renal failure.
Fessel, J;
| DOI: 10.32388/cf8mip
Mental disability is a serious and often disabling symptom of Long Covid, for which currently there is no recommendable pharmacotherapy for those patients whose response to psychotherapy is suboptimal. Treatment could be formulated by using drugs that address the brain cell-types that have been demonstrated as dominantly affected in Long Covid. Those cell-types are astrocytes, oligodendrocytes, endothelial cells/pericytes, and microglia. Lithium and fluoxetine each address all of those four cell-types. They should be administered in combination for both depth of benefit and reduction of dosages. Low dosage of each is likely to be well-tolerated and to cause neither adverse events (AE) nor serious adverse events (SAE).
Lamoureux, L;Sajesh, B;Slota, JA;Medina, SJ;Mayor, M;Frost, KL;Warner, B;Manguiat, K;Wood, H;Kobasa, D;Booth, SA;
PMID: 35746689 | DOI: 10.3390/v14061218
The numerous neurological syndromes associated with COVID-19 implicate an effect of viral pathogenesis on neuronal function, yet reports of direct SARS-CoV-2 infection in the brain are conflicting. We used a well-established organotypic brain slice culture to determine the permissivity of hamster brain tissues to SARS-CoV-2 infection. We found levels of live virus waned after inoculation and observed no evidence of cell-to-cell spread, indicating that SARS-CoV-2 infection was non-productive. Nonetheless, we identified a small number of infected cells with glial phenotypes; however, no evidence of viral infection or replication was observed in neurons. Our data corroborate several clinical studies that have assessed patients with COVID-19 and their association with neurological involvement.