ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Nature metabolism
2021 Apr 01
Ludwig, MQ;Cheng, W;Gordian, D;Lee, J;Paulsen, SJ;Hansen, SN;Egerod, KL;Barkholt, P;Rhodes, CJ;Secher, A;Knudsen, LB;Pyke, C;Myers, MG;Pers, TH;
PMID: 33767443 | DOI: 10.1038/s42255-021-00363-1
Nat Microbiol.
2018 Apr 09
Haddock E, Feldmann F, Hawman DW, Zivcec M, Hanley PW, Saturday G, Scott DP, Thomas T, Korva M, Avšič -Županc T, Safronetz D, Feldmann H.
PMID: 29632370 | DOI: 10.1038/s41564-018-0141-7
Crimean-Congo haemorrhagic fever (CCHF) is the most medically significant tick-borne disease, being widespread in the Middle East, Asia, Africa and parts of Europe 1 . Increasing case numbers, westerly movement and broadly ranging case fatality rates substantiate the concern of CCHF as a public health threat. Ixodid ticks of the genus Hyalomma are the vector for CCHF virus (CCHFV), an arbovirus in the genus Orthonairovirus of the family Nairoviridae. CCHFV naturally infects numerous wild and domestic animals via tick bite without causing obvious disease2,3. Severe disease occurs only in humans and transmission usually happens through tick bite or contact with infected animals or humans. The only CCHF disease model is a subset of immunocompromised mice4-6. Here, we show that following CCHFV infection, cynomolgus macaques exhibited hallmark signs of human CCHF with remarkably similar viral dissemination, organ pathology and disease progression. Histopathology showed infection of hepatocytes, endothelial cells and monocytes and fatal outcome seemed associated with endothelial dysfunction manifesting in a clinical shock syndrome with coagulopathy. This non-human primate model will be an invaluable asset for CCHFV countermeasures development.
Nature communications
2021 May 21
Grau-Expósito, J;Sánchez-Gaona, N;Massana, N;Suppi, M;Astorga-Gamaza, A;Perea, D;Rosado, J;Falcó, A;Kirkegaard, C;Torrella, A;Planas, B;Navarro, J;Suanzes, P;Álvarez-Sierra, D;Ayora, A;Sansano, I;Esperalba, J;Andrés, C;Antón, A;Ramón Y Cajal, S;Almirante, B;Pujol-Borrell, R;Falcó, V;Burgos, J;Buzón, MJ;Genescà, M;
PMID: 34021148 | DOI: 10.1038/s41467-021-23333-3
J Neuroinflammation.
2018 Sep 06
Rothman Sm, Tanis KQ, Gandhi P, Malkov V, Marcus J, Pearson M, Stevens R, Gilliland J, Ware C, Mahadomrongkul V, O’Loughlin E, Zeballos G, Smith R, Howell BJ, Klappenbach J, Kennedy M, Mirescu C.
PMID: 30189875 | DOI: 10.1186/s12974-018-1265-7
Abstract
BACKGROUND:
Alzheimer's disease (AD) is a chronic neurodegenerative disease with pathological hallmarks including the formation of extracellular aggregates of amyloid-beta (Aβ) known as plaques and intracellular tau tangles. Coincident with the formation of Aβ plaques is recruitment and activation of glial cells to the plaque forming a plaque niche. In addition to histological data showing the formation of the niche, AD genetic studies have added to the growing appreciation of how dysfunctional glia pathways drive neuropathology, with emphasis on microglia pathways. Genomic approaches enable comparisons of human disease profiles between different mouse models informing on their utility to evaluate secondary changes to triggers such as Aβ deposition.
METHODS:
In this study, we utilized two animal models of AD to examine and characterize the AD-associated pathology: the Tg2576 Swedish APP (KM670/671NL) and TgCRND8 Swedish plus Indiana APP (KM670/671NL + V717F) lines. We used laser capture microscopy (LCM) to isolate samples surrounding Thio-S positive plaques from distal non-plaque tissue. These samples were then analyzed using RNAsequencing.
RESULTS:
We determined age-associated transcriptomic differences between two similar yet distinct APP transgenic mouse models, known to differ in proportional amyloidogenic species and plaque deposition rates. In Tg2576, human AD gene signatures were not observed despite profiling mice out to 15 months of age. TgCRND8 mice however showed progressive and robust induction of lysomal, neuroimmune, and ITIM/ITAM-associated gene signatures overlapping with prior human AD brain transcriptomic studies. Notably, RNAseq analyses highlighted the vast majority of transcriptional changes observed in aging TgCRND8 cortical brain homogenates were in fact specifically enriched within the plaque niche samples. Data uncovered plaque-associated enrichment of microglia-related genes such as ITIM/ITAM-associated genes and pathway markers of phagocytosis.
CONCLUSION:
This work may help guide improved translational value of APP mouse models of AD, particularly for strategies aimed at targeting neuroimmune and neurodegenerative pathways, by demonstrating that TgCRND8 more closely recapitulates specific human AD-associated transcriptional responses.
Clin Cancer Res.
2019 Feb 11
Voss MH, Hierro C, Heist RS, Cleary JM, Meric-Bernstam F, Tabernero J, Janku F, Gandhi L, Iafrate AJ, Borger DR, Ishii N, Hu Y, Kirpicheva Y, Nicolas-Metral V, Pokorska-Bocci A, Vaslin Chessex A, Zanna C, Flaherty KT, Baselga J.
PMID: 30745300 | DOI: 10.1158/1078-0432.CCR-18-1959
Abstract
PURPOSE:
To investigate tolerability, efficacy, and pharmacokinetics/-dynamics (PK/PD) of Debio 1347, a selective fibroblast growth factor receptor (FGFR) Inhibitor.
EXPERIMENTAL DESIGN:
This was a first-in-human, multicenter, open-label study in patients with advanced solid tumors harboring FGFR1-3 gene alterations. Eligible patients received oral Debio 1347 at escalating doses once daily until disease progression or intolerable toxicity. Dose limiting toxicities (DLTs) were evaluated during the first 4 weeks on treatment, PK/PD post-first dose and after 4 weeks.
RESULTS:
Seventy-one patients were screened and 58 treated with Debio 1347 at doses from 10 to 150 mg/day. Predominant tumor types were breast and biliary duct cancer, most common gene alterations were FGFR1 amplifications (40%) and mutations in FGFR2 (12%) and FGFR3 (17%); 12 patients (21%) showed FGFR fusions. Five patients at three dose levels had 6 DLTs (dry mouth/eyes, hyperamylasemia, hypercalcemia, hyperbilirubinemia, hyperphosphatemia, stomatitis). The maximum tolerated dose was not reached, but dermatological toxicity became sometimes dose-limiting beyond the DLT period at ≥80 mg/day. Adverse events required dose modifications in 52% of patients, mostly due to dose-dependent, asymptomatic hyperphosphatemia (22%). RECIST responses were seen across tumor types and mechanisms of FGFR activation. Six patients, three with FGFR fusions, demonstrated partial responses, 10 additional patients tumor size regressions of ≤30%. Plasma half-life was 11.5 h. Serum phosphate increased with Debio 1347 plasma levels and confirmed target engagement at doses ≥60 mg/day.
CONCLUSIONS:
Preliminary efficacy was encouraging and tolerability acceptable up to 80 mg/day, which is now used in an extension part of the study.
Oncotarget.
2018 May 25
Bu DX, Singh R, Choi EE, Ruella M, Nunez-Cruz S, Mansfield KG, Bennett P, Barton N, Wu Q, Zhang J, Wang Y, Wei L, Cogan S, Ezell T, Joshi S, Latimer KJ, Granda B, Tschantz WR, Young RM, Huet HA, Richardson CJ, Milone MC.
PMID: 29899820 | DOI: 10.18632/oncotarget.25359
Multiple myeloma has a continued need for more effective and durable therapies. B cell maturation antigen (BCMA), a plasma cell surface antigen and member of the tumor necrosis factor (TNF) receptor superfamily, is an attractive target for immunotherapy of multiple myeloma due to its high prevalence on malignant plasma cells. The current work details the pre-clinical evaluation of BCMA expression and development of a chimeric antigen receptor (CAR) targeting this antigen using a fully human single chain variable fragment (scFv). We demonstrate that BCMA is prevalently, but variably expressed by all MM with expression on 25-100% of malignant plasma cells. Extensive Immunohistochemical analysis of normal tissue expression using commercially available polyclonal antibodies demonstrated expression within B-lineage cells across a number of tissues as expected. Based upon the highly restricted expression of BCMA within normal tissues, we generated a set of novel, fully human scFv binding domains to BCMA by screening a naïve B-cell derived phage display library. Using a series of in vitro and pre-clinical in vivo studies, we identified a scFv with high specificity for BCMA and robust anti-myeloma activity when used as the binding domain of a second-generation CAR bearing a CD137 costimulatory domain. This BCMA-specific CAR is currently being evaluated in a Phase 1b clinical study in relapsed and refractory MM patients (NCT02546167).
Cell Rep.
2018 Aug 28
Schmitt M, Schewe M, Sacchetti A, Feijtel D, van de Geer WS, Teeuwssen M, Sleddens HF, Joosten R, van Royen ME, van de Werken HJG, van Es J, Clevers H, Fodde R.
PMID: 30157426 | DOI: 10.1016/j.celrep.2018.07.085
IBD syndromes such as Crohn's disease and ulcerative colitis result from the inflammation of specific intestinal segments. Although many studies have reported on the regenerative response of intestinal progenitor and stem cells to tissue injury, very little is known about the response of differentiated lineages to inflammatory cues. Here, we show that acute inflammation of the mouse small intestine is followed by a dramatic loss of Lgr5+ stem cells. Instead, Paneth cells re-enter the cell cycle, lose their secretory expression signature, and acquire stem-like properties, thus contributing to the tissue regenerative response to inflammation. Stem cell factor secretion upon inflammation triggers signaling through the c-Kit receptor and a cascade of downstream events culminating in GSK3β inhibition and Wnt activation in Paneth cells. Hence, the plasticity of the intestinal epithelium in response to inflammation goes well beyond stem and progenitor cells and extends to the fully differentiated and post-mitotic Paneth cells.
Int J Cancer. May 15;134(10):2342-51.
Dawson H, Galván JA, Helbling M, Muller DE, Karamitopoulou E, Koelzer VH, Economou M, Hammer C, Lugli A, Zlobec I (2014).
PMID: 24166180 | DOI: 10.1002/ijc.28564.
Cell Reports Medicine
2021 May 01
Geles, K;Gao, Y;Giannakou, A;Sridharan, L;Yamin, T;Zhang, J;Karim, R;Bard, J;Piche-Nicholas, N;Charati, M;Maderna, A;Lucas, J;Golas, J;Guffroy, M;Pirie-Shepherd, S;Roy, M;Qian, J;Franks, T;Zhong, W;O’Donnell, C;Tchistiakova, L;Gerber, H;Sapra, P;
| DOI: 10.1016/j.xcrm.2021.100279
Cancer Res.
2017 Aug 15
Hanna JA, Drummond CJ, Garcia MR, Go JC, Finkelstein D, Rehg JE, Hatley ME.
PMID: 28916654 | DOI: 10.1158/0008-5472.CAN-17-1262
Angiosarcoma is an aggressive vascular sarcoma with an extremely poor prognosis. Due to the relative rarity of this disease, its molecular drivers and optimal treatment strategies are obscure. DICER1 is an RNase III endoribonuclease central to microRNA biogenesis, and germline DICER1 mutations result in a cancer predisposition syndrome, associated with an increased risk of many tumor types. Here we show that biallelic Dicer1 deletion with aP2-Cre drives aggressive and metastatic angiosarcoma independent of other genetically engineered oncogenes or tumor suppressor loss. Angiosarcomas in aP2-Cre;Dicer1Flox/- mice histologically and genetically resemble human angiosarcoma. MicroRNA-23 target genes including the oncogenes Ccnd1 as well as Adam19, Plau, and Wsb1 that promote invasiveness and metastasis were enriched in mouse and human angiosarcoma. These studies illustrate that Dicer1 can function as a traditional loss-of-function tumor suppressor gene, and they provide a fully penetrant animal model for the study of angiosarcoma development and metastasis.
Cell reports
2021 Oct 26
Ponia, SS;Robertson, SJ;McNally, KL;Subramanian, G;Sturdevant, GL;Lewis, M;Jessop, F;Kendall, C;Gallegos, D;Hay, A;Schwartz, C;Rosenke, R;Saturday, G;Bosio, CM;Martens, C;Best, SM;
PMID: 34706234 | DOI: 10.1016/j.celrep.2021.109888
Viruses
2021 Dec 15
Favre, G;Mazzetti, S;Gengler, C;Bertelli, C;Schneider, J;Laubscher, B;Capoccia, R;Pakniyat, F;Ben Jazia, I;Eggel-Hort, B;de Leval, L;Pomar, L;Greub, G;Baud, D;Giannoni, E;
PMID: 34960786 | DOI: 10.3390/v13122517
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com