ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Physiol Rep.
2017 Dec 12
Ronn J, Jensen EP, Wewer Albrechtsen NJ, Holst JJ, Sorensen CM.
PMID: 29233907 | DOI: 10.14814/phy2.13503
Glucagon-like peptide-1 (GLP-1) is an incretin hormone increasing postprandial insulin release. GLP-1 also induces diuresis and natriuresis in humans and rodents. The GLP-1 receptor is extensively expressed in the renal vascular tree in normotensive rats where acute GLP-1 treatment leads to increased mean arterial pressure (MAP) and increased renal blood flow (RBF). In hypertensive animal models, GLP-1 has been reported both to increase and decrease MAP. The aim of this study was to examine expression of renal GLP-1 receptors in spontaneously hypertensive rats (SHR) and to assess the effect of acute intrarenal infusion of GLP-1. We hypothesized that GLP-1 would increase diuresis and natriuresis and reduce MAP in SHR. Immunohistochemical staining and in situ hybridization for the GLP-1 receptor were used to localize GLP-1 receptors in the kidney. Sevoflurane-anesthetized normotensive Sprague-Dawley rats and SHR received a 20 min intrarenal infusion of GLP-1 and changes in MAP, RBF, heart rate, dieresis, and natriuresis were measured. The vasodilatory effect of GLP-1 was assessed in isolated interlobar arteries from normo- and hypertensive rats. We found no expression of GLP-1 receptors in the kidney from SHR. However, acute intrarenal infusion of GLP-1 increased MAP, RBF, dieresis, and natriuresis without affecting heart rate in both rat strains. These results suggest that the acute renal effects of GLP-1 in SHR are caused either by extrarenal GLP-1 receptors activating other mechanisms (e.g., insulin) to induce the renal changes observed or possibly by an alternative renal GLP-1 receptor.
Science Signaling
2017 Sep 12
Suply T, Hannedouche S, Carte N, Li J, Grosshans B, Schaefer M, Raad L, Beck V, Vidal S, Hiou-Feige A, Beluch N, Barbieri S, Wirsching J, Lageyre N, Hillger F, Debon C, Dawson J, Smith P, Lannoy V, Detheux M, Bitsch F, Falchetto R, Bouwmeester T, Porter J
PMID: 28900043 | DOI: 10.1126/scisignal.aal0180
GPR15 is an orphan G protein-coupled receptor (GPCR) that is found in lymphocytes. It functions as a co-receptor of simian immunodeficiency virus and HIV-2 and plays a role in the trafficking of T cells to the lamina propria in the colon and to the skin. We describe the purification from porcine colonic tissue extracts of an agonistic ligand for GPR15 and its functional characterization. In humans, this ligand, which we named GPR15L, is encoded by the gene C10ORF99 and has some features similar to the CC family of chemokines. GPR15L was found in some human and mouse epithelia exposed to the environment, such as the colon and skin. In humans, GPR15L was also abundant in the cervix. In skin, GPR15L was readily detected after immunologic challenge and in human disease, for example, in psoriatic lesions. Allotransplantation of skin from Gpr15l-deficient mice onto wild-type mice resulted in substantial graft protection, suggesting nonredundant roles for GPR15 and GPR15L in the generation of effector T cell responses. Together, these data identify a receptor-ligand pair that is required for immune homeostasis at epithelia and whose modulation may represent an alternative approach to treating conditions affecting the skin such as psoriasis.
Br J Cancer. 2015 May 19.
Galván JA, Zlobec I, Wartenberg M, Lugli A, Gloor B, Perren A, Karamitopoulou E.
PMID: 25992874 | DOI: 10.1371/journal.pone.0127768.
Mod Pathol.
2016 Feb 19
Wu G, Barnhill RL, Lee S, Li Y, Shao Y, Easton J, Dalton J, Zhang J, Pappo A, Bahrami A.
PMID: 26892443 | DOI: 10.1038/modpathol.2016.37.
Kinase activation by chromosomal translocations is a common mechanism that drives tumorigenesis in spitzoid neoplasms. To explore the landscape of fusion transcripts in these tumors, we performed whole-transcriptome sequencing using formalin-fixed, paraffin-embedded (FFPE) tissues in malignant or biologically indeterminate spitzoid tumors from 7 patients (age 2-14 years). RNA sequence libraries enriched for coding regions were prepared and the sequencing was analyzed by a novel assembly-based algorithm designed for detecting complex fusions. In addition, tumor samples were screened for hotspot TERT promoter mutations, and telomerase expression was assessed by TERT mRNA in situ hybridization (ISH). Two patients had widespread metastasis and subsequently died of disease, and 5 patients had a benign clinical course on limited follow-up (mean: 30 months). RNA sequencing and TERT mRNA ISH were successful in six tumors and unsuccessful in one disseminating tumor because of low RNA quality. RNA sequencing identified a kinase fusion in five of the six sequenced tumors: TPM3-NTRK1 (2 tumors), complex rearrangements involving TPM3, ALK, and IL6R (1 tumor), BAIAP2L1-BRAF (1 tumor), and EML4-BRAF (1 disseminating tumor). All predicted chimeric transcripts were expressed at high levels and contained the intact kinase domain. In addition, two tumors each contained a second fusion gene, ARID1B-SNX9 or PTPRZ1-NFAM1. The detected chimeric genes were validated by home-brew break-apart or fusion fluorescence in situ hybridization (FISH). The two disseminating tumors each harbored the TERT promoter -124C>T (Chr 5:1,295,228 hg19 coordinate) mutation, whereas the remaining five tumors retained the wild-type gene. The presence of the -124C>T mutation correlated with telomerase expression by TERT mRNA ISH. In summary, we demonstrated complex fusion transcripts and novel partner genes for BRAF by RNA sequencing of FFPE samples. The diversity of gene fusions demonstrated by RNA sequencing defines the molecular heterogeneity of spitzoid neoplasms.
Diabetes Obes Metab.
2017 Jan 17
Kirk RK, Pyke C, von Herrath MG, Hasselby JP, Pedersen L, Mortensen PG, Bjerre Knudsen L, Coppieters K.
PMID: 28094469 | DOI: 10.1111/dom.12879
Glucagon-like peptide-1 (GLP-1) is an incretin hormone which stimulates insulin release and inhibits glucagon secretion from the pancreas in a glucose-dependent manner. Incretin-based therapies, consisting of GLP-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors, are used for the treatment of T2D. Immunohistochemical studies for GLP-1R expression have previously been hampered by the use of unspecific polyclonal antibodies. This study used a new monoclonal antibody to assess GLP-1R expression in pancreatic tissue from 23 patients with T2D, including 7 with a DPP-4 inhibitor and 1 with a GLP-1R agonist treatment history. A software-based automated image analysis algorithm was used for quantitating intensities and area fractions of GLP-1R positive compartments. The highest intensity GLP-1R immunostaining was seen in beta-cells in islets (average signal intensity 76,1 (± 8, 1)). GLP-1R/insulin double-labelled single cells or small clusters of cells were also frequently located within or in close vicinity of ductal epithelium in all samples and with the same GLP-1R immunostaining intensity as found in beta-cells in islets. In the exocrine pancreas a large proportion of acinar cells expressed GLP-1R with a 3-fold lower intensity of immunoreactivity as compared to beta-cells (average signal intensity 25,5 (± 3,3)). Our studies did not unequivocally demonstrate GLP-1R immunoreactivity on normal-appearing ductal epithelium. Pancreatic intraepithelial neoplasia (PanINs; a form of non-invasive pancreatic ductular neoplasia) were seen in most samples, and a minority of these expressed low levels of GLP-1R. These data confirm the ubiquity of early stage PanIN lesions in patients with T2D and do not support the hypothesis that incretin-based therapies are associated with progression towards the more advanced stage PanIN lesions.
Appl Immunohistochem Mol Morphol.
2018 Aug 08
Baltzarsen PB, Georgsen JB, Nielsen PS, Steiniche T, Stougaard M.
PMID: 30095463 | DOI: 10.1097/PAI.0000000000000690
Telomerase is reactivated in most cancers and is possibly an early driver event in melanoma. Our aim was to test a novel in situ hybridization technique, RNAscope, for the detection of human telomerase reverse transcriptase (hTERT) mRNA in archival formalin-fixed, paraffin-embedded (FFPE) tissue and to compare the mRNA expression of melanomas and benign naevi. Furthermore, we wanted to see if hTERT mRNA could be a diagnostic or prognostic marker of melanoma. In situ hybridization for the detection of hTERT mRNA was performed on FFPE tissue of 17 melanomas and 13 benign naevi. We found a significant difference in the expression of hTERT mRNA between melanomas and benign naevi (P<0.001) and the expression of hTERT mRNA correlated with Breslow thickness (ρ=0.56, P=0.0205) and the Ki67 proliferation index (ρ=0.72, P=0.001). This study showed that RNAscope was a reliable in situ hybridization method for the detection of hTERT mRNA in FFPE tissue of melanomas and benign naevi. hTERT mRNA was more abundantly expressed in melanomas compared with benign naevi, but cannot be used solely as a diagnostic marker due to an overlap in expression. The hTERT mRNA expression in melanomas correlated with the prognostic markers Breslow thickness and the Ki67 index indicating a prognostic potential of hTERT mRNA.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited.
Oral Oncol. Apr; 50(4):306–310.
Poling JS, Ma XJ, Bui S, Luo Y, Li R, Koch WM, Westra WH (2014).
PMID: 24485566 | DOI: 10.1016/j.oraloncology.2014.01.006.
Eur J Cancer.
2016 Jul 28
Wartenberg M, Centeno I, Haemmig S, Vassella E, Zlobec I, Galván JA, Neuenschwander M, Schlup C, Gloor B, Lugli A, Perren A, Karamitopoulou E.
PMID: 27475963 | DOI: 10.1016/j.ejca.2016.06.013
Toxicol Pathol.
2015 Oct 28
Jacobsen B, Hill M, Reynaud L, Hey A, Barrow P.
PMID: 26516163 | DOI: -
Developmental toxicity testing of therapeutic antibodies is most often conducted in nonhuman primates owing to lack of cross-reactivity in other species. Minipigs may show cross-reactivity for some humanized antibodies but have not been used for developmental toxicity testing due to an assumed lack of embryo-fetal exposure. Unlike in humans, maternal IgGs do not cross the porcine placenta to reach the fetus. Some humanized IgGs, however, have a higher affinity for the neonatal Fc receptor (FcRn) and are more likely than endogenous antibodies to cross the placenta of animals. The major site of prenatal IgG transfer is the placenta, though FcRn in fetal intestine could also uptake maternal IgGs from swallowed amniotic fluid. Using immunohistochemistry and in situ hybridization in this experiment, FcRn was found in minipig placenta and fetal intestine during early, mid-, and late gestation. To date, however, fetal exposure to maternally administered IgGs has never been demonstrated in the minipig.
J Infect Dis.
2018 Sep 12
Nicholas VV, Rosenke R, Feldmann F, Long D, Thomas T, Scott DP, Feldmann H, Marzi A.
PMID: 30215737 | DOI: 10.1093/infdis/jiy456
Filoviruses are among the most pathogenic infectious agents known to human, with high destructive potential, as evidenced by the recent Ebola virus epidemic in West Africa. As members of the filovirus family, marburgviruses have caused similar devastating outbreaks, albeit with lower case numbers. In this study we compare the pathogenesis of Ravn virus (RAVV) and Marburg virus (MARV) strains Angola, Musoke, and Ozolin in rhesus and cynomolgus macaques, the 2 nonhuman primate species most commonly used in filovirus research. Our results reveal the most pathogenic MARV strain to be Angola, followed by Musoke, whereas Ozolin is the least pathogenic. We also demonstrate that RAVV is highly pathogenic in cynomolgus macaques but less pathogenic in rhesus macaques. Our results demonstrate a preferential infection of endothelial cells by MARVs; in addition, analysis of tissue samples suggests that lymphocyte and hepatocyte apoptosis might play a role in MARV pathogenicity. This information expands our knowledge about pathogenicity and virulence of marburgviruses.
Human pathology
2022 Aug 01
Tekin, B;Kundert, P;Yang, HH;Guo, R;
PMID: 35926811 | DOI: 10.1016/j.humpath.2022.07.013
Nat Neurosci.
2016 May 23
Wang L, Hou S, Han YG.
PMID: 27214567 | DOI: 10.1038/nn.4307.
The unique mental abilities of humans are rooted in the immensely expanded and folded neocortex, which reflects the expansion of neural progenitors, especially basal progenitors including basal radial glia (bRGs) and intermediate progenitor cells (IPCs). We found that constitutively active Sonic hedgehog (Shh) signaling expanded bRGs and IPCs and induced folding in the otherwise smooth mouse neocortex, whereas the loss of Shh signaling decreased the number of bRGs and IPCs and the size of the neocortex. SHH signaling was strongly active in the human fetal neocortex but Shh signaling was not strongly active in the mouse embryonic neocortex, and blocking SHH signaling in human cerebral organoids decreased the number of bRGs. Mechanistically, Shh signaling increased the initial generation and self-renewal of bRGs and IPC proliferation in mice and the initial generation of bRGs in human cerebral organoids. Thus, robust SHH signaling in the human fetal neocortex may contribute to bRG and IPC expansion and neocortical growth and folding.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com