Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (85)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • GLP1R (3) Apply GLP1R filter
  • HPV E6/E7 (3) Apply HPV E6/E7 filter
  • Vegfa (2) Apply Vegfa filter
  • TERT (2) Apply TERT filter
  • Bdnf (2) Apply Bdnf filter
  • Gcm1 (2) Apply Gcm1 filter
  • GLP-1R (2) Apply GLP-1R filter
  • V-nCoV2019-S (2) Apply V-nCoV2019-S filter
  • 18 (2) Apply 18 filter
  • 31 (2) Apply 31 filter
  • 33 (2) Apply 33 filter
  • KFDV (2) Apply KFDV filter
  • CD274 (1) Apply CD274 filter
  • AGTR1 (1) Apply AGTR1 filter
  • ANGPT2 (1) Apply ANGPT2 filter
  • CD68 (1) Apply CD68 filter
  • BRCA1 (1) Apply BRCA1 filter
  • IL17A (1) Apply IL17A filter
  • Rspo3 (1) Apply Rspo3 filter
  • CDH1 (1) Apply CDH1 filter
  • DICER1 (1) Apply DICER1 filter
  • CSF1 (1) Apply CSF1 filter
  • Mc4r (1) Apply Mc4r filter
  • Gfral (1) Apply Gfral filter
  • Gata3 (1) Apply Gata3 filter
  • GCG (1) Apply GCG filter
  • GIPR (1) Apply GIPR filter
  • GLI1 (1) Apply GLI1 filter
  • GREM1 (1) Apply GREM1 filter
  • GUCA2A (1) Apply GUCA2A filter
  • GUCA2B (1) Apply GUCA2B filter
  • GUCY2C (1) Apply GUCY2C filter
  • Trem2 (1) Apply Trem2 filter
  • Lpar2 (1) Apply Lpar2 filter
  • HIF1A (1) Apply HIF1A filter
  • HOXA13 (1) Apply HOXA13 filter
  • LAG3 (1) Apply LAG3 filter
  • LPAR1 (1) Apply LPAR1 filter
  • DUSP6 (1) Apply DUSP6 filter
  • PRLR (1) Apply PRLR filter
  • Tpbpa (1) Apply Tpbpa filter
  • MRC1 (1) Apply MRC1 filter
  • MSI2 (1) Apply MSI2 filter
  • Sp5 (1) Apply Sp5 filter
  • Npy (1) Apply Npy filter
  • NOTCH3 (1) Apply NOTCH3 filter
  • GPR15 (1) Apply GPR15 filter
  • PDCD1LG2 (1) Apply PDCD1LG2 filter
  • CDX2 (1) Apply CDX2 filter
  • LEPR (1) Apply LEPR filter

Product

  • (-) Remove RNAscope 2.5 VS Assay filter RNAscope 2.5 VS Assay (85)

Research area

  • Cancer (37) Apply Cancer filter
  • Neuroscience (13) Apply Neuroscience filter
  • Other (12) Apply Other filter
  • Infectious Disease (9) Apply Infectious Disease filter
  • Infectious (7) Apply Infectious filter
  • Inflammation (6) Apply Inflammation filter
  • HPV (5) Apply HPV filter
  • Immunotherapy (3) Apply Immunotherapy filter
  • Covid (2) Apply Covid filter
  • Developmental (2) Apply Developmental filter
  • Stem Cells (2) Apply Stem Cells filter
  • Aging (1) Apply Aging filter
  • Alzheimer’s disease (1) Apply Alzheimer’s disease filter
  • diabetes (1) Apply diabetes filter
  • Infectious Disease: Ebola virus disease (1) Apply Infectious Disease: Ebola virus disease filter
  • Infectious Disease: Flavivirus (1) Apply Infectious Disease: Flavivirus filter
  • Other: Vision Loss (1) Apply Other: Vision Loss filter
  • Powassan Disease (1) Apply Powassan Disease filter

Category

  • Publications (85) Apply Publications filter
TGFβ1 Induces Senescence and Attenuated VEGF Production in Retinal Pericytes

Biomedicines

2022 Jun 14

Avramovic, D;Archaimbault, SA;Kemble, AM;Gruener, S;Lazendic, M;Westenskow, PD;
PMID: 35740425 | DOI: 10.3390/biomedicines10061404

Diabetic retinopathy (DR) is a microvascular disease of the retina and a serious complication of type I and type II diabetes mellitus. DR affects working-age populations and can cause permanent vision loss if left untreated. The standard of care for proliferative DR is inhibiting VEGF. However, the mechanisms that induce excessive VEGF production in the retina remain elusive, although some evidence links elevated VEGF in the diabetic retina with local and systemic TGFβ1 upexpression. Here, we present evidence from animal models of disease suggesting that excessive TGFβ1 production in the early DR is correlated with VEGF mRNA and protein production by senescent pericytes and other retinal cells. Collectively, these results confirm that TGFβ1 is strongly implicated in the vascular complications of DR.
Hedgehog Pathway Drives Fusion-Negative Rhabdomyosarcoma Initiated From Non-myogenic Endothelial Progenitors

Cancer Cell

2018 Jan 08

Drummond CJ, Hanna JA, Garcia MR, Devine DJ, Heyrana AJ, Finkelstein D, Rehg JE, Hatley ME.
PMID: 29316425 | DOI: 10.1016/j.ccell.2017.12.001

Rhabdomyosarcoma (RMS) is a pediatric soft tissue sarcoma that histologically resembles embryonic skeletal muscle. RMS occurs throughout the body and an exclusively myogenic origin does not account for RMS occurring in sites devoid of skeletal muscle. We previously described an RMS model activating a conditional constitutively active Smoothened mutant (SmoM2) with aP2-Cre. Using genetic fate mapping, we show SmoM2 expression in Cre-expressing endothelial progenitors results in myogenic transdifferentiation and RMS. We show that endothelium and skeletal muscle within the head and neck arise from Kdr-expressing progenitors, and that hedgehog pathway activation results in aberrant expression of myogenic specification factors as a potential mechanism driving RMS genesis. These findings suggest that RMS can originate from aberrant development of non-myogenic cells.

Establishing a Mouse Model for Sexual Transmission and Male Reproductive Tract Persistence of Ebola virus

The Journal of infectious diseases

2023 Apr 27

Clancy, CS;Smart, G;Rhoderick, JF;O'Donnell, KL;Rosenke, R;Schäfer, A;Marzi, A;
PMID: 37102262 | DOI: 10.1093/infdis/jiad118

Ebola virus disease (EVD) has resulted in the death of over 15,000 people since its discovery in 1976. At least one incident of reemergence of EVD has been associated with persistent male reproductive tract infection in a patient surviving EVD greater than 500 days prior. To date, animal models of Ebola virus (EBOV) infection have failed to fully characterize the pathogenesis of reproductive tract infection. Furthermore, no animal model of sexual transmission of EBOV exists. Herein we describe a roadmap to modeling sexual transmission of EBOV using a mouse-adapted EBOV isolate in immunocompetent male mice and female Ifnar-/- mice.
Characterization of the glucagon-like peptide-1 receptor in male mouse brain using a novel antibody and in situ hybridization.

Endocrinology.

2017 Oct 30

Jensen CB, Pyke C, Rasch MG, Dahl AB, Knudsen LB, Secher A.
PMID: 29095968 | DOI: 10.1210/en.2017-00812

Glucagon-like peptide-1 (GLP-1) is a physiological regulator of appetite and long-acting GLP-1 receptor agonists (GLP-1RA) lower food intake and bodyweight in both human and animal studies. The effects are mediated through brain GLP-1Rs, and several brain nuclei expressing the GLP-1R may be involved. To date, mapping the complete location of GLP-1R protein in the brain has been challenged by lack of good antibodies and the discrepancy between mRNA and protein especially relevant in neuronal axonal processes. Here, we present a novel and specific monoclonal GLP-1R antibody for immunohistochemistry with murine tissue and show detailed distribution of GLP-1R expression as well as mapping of GLP-1R mRNA by non-radioactive in situ hybridization. Semi-automated image analysis was performed to map the GLP-1R distribution to atlas plates from the Allen Institute of Brain Science (AIBS). The GLP-1R was abundantly expressed in numerous regions including the septal nucleus, the hypothalamus and the brain stem. GLP-1R protein expression was also observed on neuronal projections in brain regions devoid of any mRNA which has not been observed in earlier reports. Taken together, these findings provide new knowledge on GLP-1R expression in neuronal cell bodies and neuronal projections.

Modeling Powassan virus infection in Peromyscus leucopus, a natural host

PLoS Negl Trop Dis.

2017 Jan 31

Mlera L, Meade-White K, Saturday G, Scott D, Bloom ME.
PMID: 28141800 | DOI: 10.1371/journal.pntd.0005346

The tick-borne flavivirus, Powassan virus (POWV) causes life-threatening encephalitis in humans in North America and Europe. POWV is transmitted by ixodid tick vectors that feed on small to medium-sized mammals, such as Peromyscus leucopus mice, which may serve as either reservoir, bridge or amplification hosts. Intraperitoneal and intracranial inoculation of 4-week old Peromyscus leucopus mice with 103 PFU of POWV did not result in overt clinical signs of disease. However, following intracranial inoculation, infected mice seroconverted to POWV and histopathological examinations revealed that the mice uniformly developed mild lymphocytic perivascular cuffing and microgliosis in the brain and spinal cord from 5 to 15 days post infection (dpi), suggesting an early inflammatory response. In contrast, intracranial inoculation of 4-week old C57BL/6 and BALB/c mice was lethal by 5 dpi. Intraperitoneal inoculation was lethal in BALB/c mice, but 40% (2/5) of C57BL/6 mice survived. We concluded that Peromyscus leucopus mice infected i.c. with a lethal dose of POWV support a limited infection, restricted to the central nervous system and mount an antibody response to the virus. However, they fail to develop clinical signs of disease and are able to control the infection. These results suggest the involvement of restriction factors, and the mechanism by which Peromyscus leucopus mice restrict POWV infection remains under study.

Alkhurma Hemorrhagic Fever Virus causes lethal disease in IFNAR-/- mice

Emerging microbes & infections

2021 May 20

Bhatia, B;Haddock, E;Shaia, C;Rosenke, R;Meade-White, K;Griffin, AJ;Marzi, A;Feldmann, H;
PMID: 34013842 | DOI: 10.1080/22221751.2021.1932609

AbstractAlkhurma hemorrhagic fever virus (AHFV), a tick-borne flavivirus closely related to Kyasanur Forest disease virus, is the causative agent of a severe, sometimes fatal hemorrhagic/encephalitic disease in humans. To date, there are no specific treatments or vaccine available to combat AHFV infections. A challenge for the development of countermeasures is the absence of a reliable AHFV animal disease model for efficacy testing. Here, we used mice lacking the type I interferon (IFN) receptor (IFNAR-/-). AHFV strains Zaki-2 and 2003 both caused uniform lethality in these mice after intraperitoneal injection, but strain 2003 seemed more virulent with a median lethal dose of 0.4 median tissue culture infectious doses (TCID50). Disease manifestation in this animal model was similar to case reports of severe human AHFV infections with early generalized signs leading to hemorrhagic and neurologic complications. AHFV infection resulted in early high viremia followed by high viral loads (<108 TCID50/g tissue) in all analyzed organs. Despite systemic viral replication, virus-induced pathology was mainly found in the spleen, lymph nodes, liver and heart. This uniformly lethal AHFV disease model will be instrumental for pathogenesis studies and countermeasure development against this neglected zoonotic pathogen.
Impact of age and vector construct on striatal and nigral transgene expression

MOLECULAR THERAPY — METHODS & CLINICAL DEVELOPMENT

2016 Dec 07

Polinski NK, Manfredsson FP, Benskey MJ, Fischer DL, Kemp CJ, Steece-Collier K, Sandoval IM, Paumier KL, Sortwell CE.
PMID: - | DOI: 10.1038/mtm.2016.82

Therapeutic protein delivery using viral vectors has shown promise in preclinical models of Parkinson’s disease (PD) but clinical trial success remains elusive. This may partially be due to a failure to include advanced age as a covariate despite aging being the primary risk factor for PD. We investigated transgene expression following intracerebral injections of recombinant adeno-associated virus pseudotypes 2/2 (rAAV2/2), 2/5 (rAAV2/5), 2/9 (rAAV2/9), and lentivirus (LV) expressing green fluorescent protein (GFP) in aged versus young adult rats. Both rAAV2/2 and rAAV2/5 yielded lower GFP expression following injection to either the aged substantia nigra or striatum. rAAV2/9-mediated GFP expression was deficient in the aged striatonigral system but displayed identical transgene expression between ages in the nigrostriatal system. Young and aged rats displayed equivalent GFP levels following LV injection to the striatonigral system but LV-delivered GFP was deficient in delivering GFP to the aged nigrostriatal system. Notably, age-related transgene expression deficiencies revealed by protein quantitation were poorly predicted by GFP-immunoreactive cell counts. Further, in situ hybridization for the viral CβA promoter revealed surprisingly limited tropism for astrocytes compared to neurons. Our results demonstrate that aging is a critical covariate to consider when designing gene therapy approaches for PD.

Novel Bi-specific Domain Antibody to LRP6 Inhibits Wnt and R-spondin Ligand-induced Wnt Signaling and Tumor Growth

Mol Cancer Res.

2016 Jul 11

Jackson H, Granger D, Jones G, Anderson L, Friel S, Rycroft D, Fieles W, Tunstead J, Steward M, Wattam T, Walker A, Griggs J, Al-Hajj M, Shelton C.
PMID: 27401612 | DOI: 10.1158/1541-7786.MCR-16-0088

Abstract

Aberrant WNT signaling is associated with the formation and growth of numerous human cancer types. The low-density lipoprotein receptor-related protein 6 (LRP6) is the least redundant component of the WNT receptor complex with two independent WNT ligand binding sites. Using domain antibody (dAb) technology, a bi-specific antibody (GSK3178022) to LRP6 was identified that is capable of blocking stimulation in the presence of a range of Wnt (WNT) and R-spondin (RSPO) ligands in vitro. GSK3178022 was also efficacious in reducing WNT target gene expression in vivo, in both cancer cell line and patient-derived xenograft (PDX) models, and delays tumor growth in a patient-derived RSPO fusion model of colorectal cancer.

IMPLICATIONS:

This study demonstrates the inhibition of a key oncogenic receptor, intractable to monoclonal antibody inhibition due to multiple independent ligand interaction sites, using an innovative domain antibody approach.

Functional profiling of microtumors to identify cancer associated fibroblast-derived drug targets

Oncotarget

2017 Oct 20

Horman SR, To J, Lamb J, Zoll JH, Leonetti N, Tu B, Moran R, Newlin R, Walker JR, Orth AP.
PMID: - | DOI: 10.18632/oncotarget.21915

Recent advances in chemotherapeutics highlight the importance of molecularly-targeted perturbagens. Although these therapies typically address dysregulated cancer cell proteins, there are increasing therapeutic modalities that take into consideration cancer cell-extrinsic factors. Targeting components of tumor stroma such as vascular or immune cells has been shown to represent an efficacious approach in cancer treatment. Cancer-associated fibroblasts (CAFs) exemplify an important stromal component that can be exploited in targeted therapeutics, though their employment in drug discovery campaigns has been relatively minimal due to technical logistics in assaying for CAF-tumor interactions. Here we report a 3-dimensional multi-culture tumor:CAF spheroid phenotypic screening platform that can be applied to high-content drug discovery initiatives. Using a functional genomics approach we systematically profiled 1,024 candidate genes for CAF-intrinsic anti-spheroid activity; identifying several CAF genes important for development and maintenance of tumor:CAF co-culture spheroids. Along with previously reported genes such as WNT, we identify CAF-derived targets such as ARAF and COL3A1 upon which the tumor compartment depends for spheroid development. Specifically, we highlight the G-protein-coupled receptor OGR1 as a unique CAF-specific protein that may represent an attractive drug target for treating colorectal cancer. In vivo, murine colon tumor implants in OGR1 knockout mice displayed delayed tumor growth compared to tumors implanted in wild type littermate controls. These findings demonstrate a robust microphysiological screening approach for identifying new CAF targets that may be applied to drug discovery efforts.

Promoter Hypomethylation and Increased Expression of the Long Non-coding RNA LINC00152 Support Colorectal Carcinogenesis

Path and Oncol

2020 Apr 20

Orsolya Galamb, Alexandra Kalm�r, Anna Sebesty�n, Titanilla Dank�, Csilla Kriston, Istv�n F?ri, P�ter Holl�si, Istv�n Csabai, Barnab�s Wichmann, Tibor Kren�cs, Barbara Kinga Bart�k, Zs�fia Brigitta Nagy, S�ra Zsigrai, G�bor Barna, Zsolt Tulassay, P�ter Igaz & B�la Moln�r
| DOI: 10.1007/s12253-020-00800-8

Up-regulation of the long non-coding RNA LINC00152 can contribute to cancer development, proliferation and invasion, including colorectal cancer, however, its mechanism of action in colorectal carcinogenesis and progression is only insufficiently understood. In this work we correlated LINC00152 expression with promoter DNA methylation changes in colorectal tissues along the normal-adenoma-carcinoma sequence and studied the effects of LINC00152 silencing on the cell cycle regulation and on the whole transcriptome in colon carcinoma cells using cell and molecular biology techniques. LINC00152 was significantly up-regulated in adenoma and colorectal cancer (p?
Identifying Early Target Cells of Nipah Virus Infection in Syrian Hamsters.

PLoS Negl Trop Dis.

2016 Nov 03

Baseler L, Scott DP, Saturday G, Horne E, Rosenke R, Thomas T, Meade-White K, Haddock E, Feldmann H, de Wit E.
PMID: 27812087 | DOI: 10.1371/journal.pntd.0005120

Abstract

BACKGROUND:

Nipah virus causes respiratory and neurologic disease with case fatality rates up to 100% in individual outbreaks. End stage lesions have been described in the respiratory and nervous systems, vasculature and often lymphoid organs in fatal human cases; however, the initial target organs of Nipah virus infection have not been identified. Here, we detected the initial target tissues and cells of Nipah virus and tracked virus dissemination during the early phase of infection in Syrian hamsters inoculated with a Nipah virus isolate from Malaysia (NiV-M) or Bangladesh (NiV-B).

METHODOLOGY/PRINCIPAL FINDINGS:

Syrian hamsters were euthanized between 4 and 48 hours post intranasal inoculation and tissues were collected and analyzed for the presence of viral RNA, viral antigen and infectious virus. Virus replication was first detected at 8 hours post inoculation (hpi). Nipah virus initially targeted type I pneumocytes, bronchiolar respiratory epithelium and alveolar macrophages in the lung and respiratory and olfactory epithelium lining the nasal turbinates. By 16 hpi, virus disseminated to epithelial cells lining the larynx and trachea. Although the pattern of viral dissemination was similar for both virus isolates, the rate of spread was slower for NiV-B. Infectious virus was not detected in the nervous system or blood and widespread vascular infection and lesions within lymphoid organs were not observed, even at 48 hpi.

CONCLUSIONS/SIGNIFICANCE:

Nipah virus initially targets the respiratory system. Virus replication in the brain and infection of blood vessels in non-respiratory tissues does not occur during the early phase of infection. However, virus replicates early in olfactory epithelium and may serve as the first step towards nervous system dissemination, suggesting that development of vaccines that block virus dissemination or treatments that can access the brain and spinal cord and directly inhibit virus replication may be necessary for preventing central nervous system pathology.

Of Murines and Humans: Modeling Persistent Powassan Disease in C57BL/6 Mice

mBio

2023 Feb 21

Scroggs, SLP;Offerdahl, DK;Stewart, PE;Shaia, C;Griffin, AJ;Bloom, ME;
PMID: 36809119 | DOI: 10.1128/mbio.03606-22

Powassan infection is caused by two closely related, tick-transmitted viruses of the genus Flavivirus (family Flaviviridae): Powassan virus lineage I (POWV) and lineage II (known as deer tick virus [DTV]). Infection is typically asymptomatic or mild but can progress to neuroinvasive disease. Approximately 10% of neuroinvasive cases are fatal, and half of the survivors experience long-term neurological sequelae. Understanding how these viruses cause long-term symptoms as well as the possible role of viral persistence is important for developing therapies. We intraperitoneally inoculated 6-week-old C57BL/6 mice (50% female) with 103 focus-forming units (FFU) DTV and assayed for infectious virus, viral RNA, and inflammation during acute infection and 21, 56, and 84 days postinfection (dpi). Although most mice (86%) were viremic 3 dpi, only 21% of the mice were symptomatic and 83% recovered. Infectious virus was detected only in the brains of mice sampled during the acute infection. Viral RNA was detected in the brain until 84 dpi, but the magnitude decreased over time. Meningitis and encephalitis were visible in acute mice and from mice sampled at 21 dpi. Inflammation was observed until 56 dpi in the brain and 84 dpi in the spinal cord, albeit at low levels. These results suggest that the long-term neurological symptoms associated with Powassan disease are likely caused by lingering viral RNA and chronic inflammation in the central nervous system rather than by a persistent, active viral infection. The C57BL/6 model of persistent Powassan mimics illness in humans and can be used to study the mechanisms of chronic disease. IMPORTANCE Half of Powassan infection survivors experience long-term, mild to severe neurological symptoms. The progression from acute to chronic Powassan disease is not well understood, severely limiting treatment and prevention options. Infection of C57BL/6 mice with DTV mimics clinical disease in humans, and the mice exhibit CNS inflammation and viral RNA persistence until at least 86 dpi, while infectious virus is undetectable after 12 dpi. These findings suggest that the long-term neurological symptoms of chronic Powassan disease are in part due the persistence of viral RNA and the corresponding long-term inflammation of the brain and spinal cord. Our work demonstrates that C57BL/6 mice can be used to study the pathogenesis of chronic Powassan disease.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?