Scandinavian Journal of Gastroenterology
Brenna Ø, Bruland T, Furnes MW, van Beelen Granlund A, Drozdov I, Emgård J, Brønstad G, Kidd M, Sandvik AK, Gustafsson BI.
PMID: 25979109 | DOI: 10.3109/00365521.2015.1038849
Objective. Activation of membrane receptor guanylate cyclase-C (GC-C) is implicated in gastrointestinal fluid and electrolyte balance, preservation of intestinal barrier integrity, anti-trophic effects and inhibition of pain sensation. To evaluate GC-C signaling, we examined the regulation of GC-C (GUCY2C/Gucy2c) and its endogenous ligands guanylin (GN/GUCA2A/Guca2a) and uroguanylin (UGN/GUCA2B/Guca2b) in colonic Crohn’s disease (CD), ulcerative colitis (UC) and in rats with 2,4,6-Trinitrobenzene sulphonic acid (TNBS) colitis. Correlation analyses between expression of GUCA2A and GUCY2C and expression of inflammatory cytokines (IL1A, IL1B, TNFA and IFNG) were conducted. Additionally, expression of transcription factors for GUCA2A and GUCY2C, and the GC-C signaling pathway, were examined. Material and methods. Biopsies from active UC/CD, un-inflamed UC/CD and healthy controls, and inflamed and healthy rat colon were investigated with gene expression microarray, immunohistochemistry (IHC) and in situ hybridization (ISH). Results. GUCA2A/Guca2a, GUCA2B, GUCY2C/Gucy2c, transcription factors, as well as several cyclic guanosine-3′,5′-monophosphate downstream mediators were all significantly down-regulated in both inflamed colonic inflammatory bowel disease (IBD) mucosa and TNBS colitis. Expression of GUCA2A and GUCY2C negatively correlated to expression of inflammatory cytokines. IHC and ISH confirmed microarray results for GUCA2A/Guca2a and GUCY2C/Gucy2c in inflamed samples. We identified a highly significant positive correlation between the expression of the transcription factor caudal type homeobox 2 (CDX2) and the expression of the downstream target gene GUCY2C. Conclusions. GUCA2A, GUCA2B and GUCY2C as well as several steps of the GC-C signaling pathway are down-regulated in IBD. This may have implications in IBD pathogenesis. Read More: http://informahealthcare.com/doi/full/10.3109/00365521.2015.1038849
Laboratory animal research
Lee, NY;Lee, YW;Hong, SM;On, D;Yoon, GM;An, SH;Nam, KT;Seo, JY;Shin, JS;Choi, YK;Oh, SH;Yun, JW;Lee, HY;Choi, KS;Seong, JK;Park, JW;
PMID: 37161442 | DOI: 10.1186/s42826-023-00157-4
The Omicron variant has become the most prevalent SARS-CoV-2 variant. Omicron is known to induce milder lesions compared to the original Wuhan strain. Fatal infection of the Wuhan strain into the brain has been well documented in COVID-19 mouse models and human COVID-19 cases, but apparent infections into the brain by Omicron have not been reported in human adult cases or animal models. In this study, we investigated whether Omicron could spread to the brain using K18-hACE2 mice susceptible to SARS-CoV-2 infection.K18-hACE2 mice were intranasally infected with 1 × 105 PFU of the original Wuhan strain and the Omicron variant of SARS-CoV-2. A follow-up was conducted 7 days post infection. All Wuhan-infected mice showed > 20% body weight loss, defined as the lethal condition, whereas two out of five Omicron-infected mice (40%) lost > 20% body weight. Histopathological analysis based on H&E staining revealed inflammatory responses in the brains of these two Omicron-infected mice. Immunostaining analysis of viral nucleocapsid protein revealed severe infection of neuron cells in the brains of these two Omicron-infected mice. Lymphoid depletion and apoptosis were observed in the spleen of Omicron-infected mice with brain infection.Lethal conditions, such as severe body weight loss and encephalopathy, can occur in Omicron-infected K18-hACE2 mice. Our study reports, for the first time, that Omicron can induce brain infection with lymphoid depletion in the mouse COVID-19 model.
Wymore Brand, M;Proctor, AL;Hostetter, JM;Zhou, N;Friedberg, I;Jergens, AE;Phillips, GJ;Wannemuehler, MJ;
PMID: 35381031 | DOI: 10.1371/journal.pone.0266005
The gastrointestinal microbiota begins to be acquired at birth and continually matures through early adolescence. Despite the relevance for gut health, few studies have evaluated the impact of pathobiont colonization of neonates on the severity of colitis later in life. LF82 is an adherent invasive E. coli strain associated with ileal Crohn's disease. The aim of this study was to evaluate the severity of dextran sodium sulfate (DSS)-induced colitis in mice following E. coli LF82 colonization. Gnotobiotic mice harboring the altered Schaedler flora (ASF) were used as the model. While E. coli LF82 is neither adherent nor invasive, it was been demonstrated that adult ASF mice colonized with E. coli LF82 develop more severe DSS-induced colitis compared to control ASF mice treated with DSS. Therefore, we hypothesized that E. coli LF82 colonization of neonatal ASF mice would reduce the severity of DSS-induced inflammation compared to adult ASF mice colonized with E. coli LF82. To test this hypothesis, adult ASF mice were colonized with E. coli LF82 and bred to produce offspring (LF82N) that were vertically colonized with LF82. LF82N and adult-colonized (LF82A) mice were given 2.0% DSS in drinking water for seven days to trigger colitis. More severe inflammatory lesions were observed in the LF82N + DSS mice when compared to LF82A + DSS mice, and were characterized as transmural in most of the LF82N + DSS mice. Colitis was accompanied by secretion of proinflammatory cytokines (IFNγ, IL-17) and specific mRNA transcripts within the colonic mucosa. Using 16S rRNA gene amplicon sequencing, LF82 colonization did not induce significant changes in the ASF community; however, minimal changes in spatial redistribution by fluorescent in situ hybridization were observed. These results suggest that the age at which mice were colonized with E. coli LF82 pathobiont differentially impacted severity of subsequent colitic events.
J Vet Diagn Invest. 2018 Dec 12
Resende TP, Marthaler D, Vannucci FA.
PMID: 30541408 | DOI: 10.1177/1040638718817502
Rotavirus groups A, B, and C (RVA, RVB, and RVC, respectively) have been the most prevalent and pathogenic in pigs. To date, immunohistochemistry is only available for RVA because of the lack of commercial antibodies for RVB and RVC. We developed a novel in situ hybridization RNA-based chromogenic technique (ISH-RNA) to detect and subtype RVA, RVB, and RVC. We evaluated 33 samples that were reverse-transcription PCR positive for RVA, RVB, and/or RVC. ISH-RNA was able to detect as few as 103 RV RNA copies/mL. The new ISH-RNA test can be useful for routine investigation of rotavirus enteritis in order to guide strategies for control of the infection in pigs, but a full validation study needs to be completed. Pathogenesis studies may be conducted using ISH-RNA based on the identification of replicating virus.
J Neurooncol. 2014 May 28.
Abiria SA, Williams TV, Munden AL, Grover VK, Wallace A, Lundberg CJ, Valadez JG, Cooper MK.
PMID: 24867209
Hedgehog (Hh) signaling regulates the growth of malignant gliomas by a ligand-dependent mechanism. The cellular source of Sonic Hh ligand and mode of signaling have not been clearly defined due to the lack of methods to definitively identify neoplastic cells in glioma specimens. Using an antibody specific for mutant isocitrate dehydrogenase protein expression to identify glioma cells, we demonstrate that Sonic Hh ligand and the pathway components Patched1 (PTCH1) and GLI1 are expressed in neoplastic cells. Further, Sonic Hh ligand and its transcriptional targets, PTCH1 and GLI1, are expressed in mutually distinct populations of neoplastic cells. These findings support a paracrine mode of intratumoral Hh signaling in malignant gliomas.
Wang B, Zhao L, Fish M, Logan CY, Nusse R.
PMID: 26245375 | DOI: 10.1038/nature14863
The source of new hepatocytes in the uninjured liver has remained an open question. By lineage tracing using the Wnt-responsive gene Axin2 in mice, we identify a population of proliferating and self-renewing cells adjacent to the central vein in the liver lobule. These pericentral cells express the early liver progenitor marker Tbx3, are diploid, and thereby differ from mature hepatocytes, which are mostly polyploid. The descendants of pericentral cells differentiate into Tbx3-negative, polyploid hepatocytes, and can replace all hepatocytes along the liver lobule during homeostatic renewal. Adjacent central vein endothelial cells provide Wnt signals that maintain the pericentral cells, thereby constituting the niche. Thus, we identify a cell population in the liver that subserves homeostatic hepatocyte renewal, characterize its anatomical niche, and identify molecular signals that regulate its activity.
Tian X, Sun S, Casbon AJ, Lim E, Francis KP, Hellman J, Prakash A.
PMID: - | DOI: 10.3389/fimmu.2017.01337
Sterile lung injury is an important clinical problem that complicates the course of severely ill patients. Interruption of blood flow, namely ischemia–reperfusion (IR), initiates a sterile inflammatory response in the lung that is believed to be maladaptive. The rationale for this study was to elucidate the molecular basis for lung IR inflammation and whether it is maladaptive or beneficial. Using a mouse model of lung IR, we demonstrate that sequential blocking of inflammasomes [specifically, NOD-, LRR-, and pyrin domain-containing 3 (NLRP3)], inflammatory caspases, and interleukin (IL)-1β, all resulted in an attenuated inflammatory response. IL-1β production appeared to predominantly originate in conjunction with alveolar type 2 epithelial cells. Lung IR injury recruited unactivated or dormant neutrophils producing less reactive oxygen species thereby challenging the notion that recruited neutrophils are terminally activated. However, lung IR inflammation was able to limit or reduce the bacterial burden from subsequent experimentally induced pneumonia. Notably, inflammasome-deficient mice were unable to alter this bacterial burden following IR. Thus, we conclude that the NLRP3 inflammasome, through IL-1β production, regulates lung IR inflammation, which includes recruitment of dormant neutrophils. The sterile IR inflammatory response appears to serve an important function in inducing resistance to subsequent bacterial pneumonia and may constitute a critical part of early host responses to infection in trauma.
Filbin MG, Tirosh I, Hovestadt V, Shaw ML, Escalante LE, Mathewson ND, Neftel C, Frank N, Pelton K, Hebert CM, Haberler C, Yizhak K, Gojo J, Egervari K, Mount C, van Galen P, Bonal DM, Nguyen QD, Beck A, Sinai C, Czech T, Dorfer C, Goumnerova L, Lavarino
PMID: 29674595 | DOI: 10.1126/science.aao4750
Gliomas with histone H3 lysine27-to-methionine mutations (H3K27M-glioma) arise primarily in the midline of the central nervous system of young children, suggesting a cooperation between genetics and cellular context in tumorigenesis. Although the genetics of H3K27M-glioma are well characterized, their cellular architecture remains uncharted. We performed single-cell RNA sequencing in 3321 cells from six primary H3K27M-glioma and matched models. We found that H3K27M-glioma primarily contain cells that resemble oligodendrocyte precursor cells (OPC-like), whereas more differentiated malignant cells are a minority. OPC-like cells exhibit greater proliferation and tumor-propagating potential than their more differentiated counterparts and are at least in part sustained by PDGFRA signaling. Our study characterizes oncogenic and developmental programs in H3K27M-glioma at single-cell resolution and across genetic subclones, suggesting potential therapeutic targets in this disease.
Pei H, Patterson CM, Sutton AK, Burnett KH, Myers MG Jr, Olson DP.
PMID: 30541071 | DOI: 10.1210/en.2018-00747
The central melanocortin system plays a crucial role in the control of energy balance. Although the decreased energy expenditure and increased adiposity of melanocortin-3 receptor (Mc3R)-null mice suggest the importance of Mc3R-regulated neurons in energy homeostasis, the roles for specific subsets of Mc3R neurons in energy balance have yet to be determined. Because the lateral hypothalamic area (LHA) contributes to the control of energy expenditure and feeding, we generated Mc3rcre mice to determine the roles of LHA Mc3R (Mc3RLHA) neurons in energy homeostasis. We found that Mc3RLHA neurons overlap extensively with LHA neuron markers that contribute to the control of energy balance (neurotensin, galanin, and leptin receptor) and project to brain areas involved in the control of feeding, locomotion, and energy expenditure, consistent with potential roles for Mc3RLHA neurons in these processes. Indeed, selective chemogenetic activation of Mc3RLHA neurons increased locomotor activity and augmented refeeding after a fast. Although the ablation of Mc3RLHA neurons did not alter food intake, mice lacking Mc3RLHA neurons displayed decreased energy expenditure and locomotor activity, along with increased body mass and adiposity. Thus, Mc3R neurons lie within LHA neurocircuitry that modulates locomotor activity and energy expenditure and contribute to energy balance control.
Tang, W;Watson, C;Olmstead, T;Allan, C;Kwon, R;
| DOI: 10.1016/j.isci.2022.103784
Zebrafish regenerate fin rays following amputation through epimorphic regeneration, a process that has been proposed to involve the epithelial-to-mesenchymal transition (EMT). We performed single-cell RNA sequencing (scRNA-seq) to elucidate osteoblastic transcriptional programs during zebrafish caudal fin regeneration. We show that osteoprogenitors are enriched with components associated with EMT and its reverse, mesenchymal-to-epithelial transition (MET), and provide evidence that the EMT markers cdh11 and twist2 are co-expressed in dedifferentiating cells at the amputation stump at 1 dpa, and in differentiating osteoblastic cells in the regenerate, the latter of which are enriched in EMT signatures. We also show that esrp1, a regulator of alternative splicing in epithelial cells that is associated with MET, is expressed in a subset of osteoprogenitors during outgrowth. This study provides a single cell resource for the study of osteoblastic cells during zebrafish fin regeneration, and supports the contribution of MET- and EMT-associated components to this process.
The Journal of clinical investigation
Wu, J;Raman, A;Coffey, NJ;Sheng, X;Wahba, J;Seasock, MJ;Ma, Z;Beckerman, P;Laczkó, D;Palmer, MB;Kopp, JB;Kuo, JJ;Pullen, SS;Boustany-Kari, CM;Linkermann, A;Susztak, K;
PMID: 34651582 | DOI: 10.1172/JCI136329
Coding variants in apolipoprotein L1 (APOL1), termed G1 and G2, can explain most excess kidney disease risk in African Americans; however, the molecular pathways of APOL1-induced kidney dysfunction remain poorly understood. Here, we report that expression of G2 APOL1 in the podocytes of Nphs1rtTA/TRE-G2APOL1 (G2APOL1) mice leads to early activation of the cytosolic nucleotide sensor, stimulator of interferon genes (STING), and the NLR family pyrin domain-containing 3 (NLRP3) inflammasome. STING and NLRP3 expression was increased in podocytes from patients with high-risk APOL1 genotypes, and expression of APOL1 correlated with caspase-1 and gasdermin D (GSDMD) levels. To demonstrate the role of NLRP3 and STING in APOL1-associated kidney disease, we generated transgenic mice with the G2 APOL1 risk variant and genetic deletion of Nlrp3 (G2APOL1/Nlrp3 KO), Gsdmd (G2APOL1/Gsdmd KO), and STING (G2APOL1/STING KO). Knockout mice displayed marked reduction in albuminuria, azotemia, and kidney fibrosis compared with G2APOL1 mice. To evaluate the therapeutic potential of targeting NLRP3, GSDMD, and STING, we treated mice with MCC950, disulfiram, and C176, potent and selective inhibitors of NLRP3, GSDMD, and STING, respectively. G2APOL1 mice treated with MCC950, disulfiram, and C176 showed lower albuminuria and improved kidney function even when inhibitor treatment was initiated after the development of albuminuria.
Development. 2019 Jan 2;146(1).
Tsai SL, Baselga-Garriga C, Melton DA.
PMID: 30602532 | DOI: 10.1242/dev.169128
Blastema formation, a hallmark of limb regeneration, requires proliferation and migration of progenitors to the amputation plane. Although blastema formation has been well described, the transcriptional programs that drive blastemal progenitors remain unknown. We transcriptionally profiled dividing and non-dividing cells in regenerating stump tissues, as well as the wound epidermis, during early axolotl limb regeneration. Our analysis revealed unique transcriptional signatures of early dividing cells and, unexpectedly, repression of several core developmental signaling pathways in early regenerating stump tissues. We further identify an immunomodulatory role for blastemal progenitors through interleukin 8 (IL-8), a highly expressed cytokine in subpopulations of early blastemal progenitors. Ectopic il-8 expression in non-regenerating limbs induced myeloid cell recruitment, while IL-8 knockdown resulted in defective myeloid cell retention during late wound healing, delaying regeneration. Furthermore, the il-8 receptor cxcr-1/2 was expressed in myeloid cells, and inhibition of CXCR-1/2 signaling during early stages of limb regeneration prevented regeneration. Altogether, our findings suggest that blastemal progenitors are active early mediators of immune support, and identify CXCR-1/2 signaling as an important immunomodulatory pathway during the initiation of regeneration.