Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (158)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (5) Apply TBD filter
  • Axin2 (4) Apply Axin2 filter
  • CD4 (4) Apply CD4 filter
  • CXCL10 (4) Apply CXCL10 filter
  • GFAP (4) Apply GFAP filter
  • Emr1 (4) Apply Emr1 filter
  • Wnt4 (3) Apply Wnt4 filter
  • Rspo3 (3) Apply Rspo3 filter
  • Lgr5 (3) Apply Lgr5 filter
  • Foxp3 (3) Apply Foxp3 filter
  • Sftpc (3) Apply Sftpc filter
  • Mc3r (3) Apply Mc3r filter
  • Cre (3) Apply Cre filter
  • SARS-CoV-2 (3) Apply SARS-CoV-2 filter
  • MEG3 (2) Apply MEG3 filter
  • Wnt16 (2) Apply Wnt16 filter
  • Fgfr3 (2) Apply Fgfr3 filter
  • CD68 (2) Apply CD68 filter
  • Cd8a (2) Apply Cd8a filter
  • COL1A1 (2) Apply COL1A1 filter
  • Rspo1 (2) Apply Rspo1 filter
  • Il10 (2) Apply Il10 filter
  • CSF1 (2) Apply CSF1 filter
  • Dll1 (2) Apply Dll1 filter
  • TH (2) Apply TH filter
  • FFAR1 (2) Apply FFAR1 filter
  • IL33 (2) Apply IL33 filter
  • JAG1 (2) Apply JAG1 filter
  • Hopx (2) Apply Hopx filter
  • PECAM1 (2) Apply PECAM1 filter
  • Spp1 (2) Apply Spp1 filter
  • MKI67 (2) Apply MKI67 filter
  • Npy (2) Apply Npy filter
  • PDGFRA (2) Apply PDGFRA filter
  • Cxcl1 (2) Apply Cxcl1 filter
  • Pomc (2) Apply Pomc filter
  • APOL1 (2) Apply APOL1 filter
  • IL-8 (2) Apply IL-8 filter
  • TNF-α (2) Apply TNF-α filter
  • Il-6 (2) Apply Il-6 filter
  • k (2) Apply k filter
  • l (2) Apply l filter
  • Cx3cr1 (2) Apply Cx3cr1 filter
  • Kcnq1 (2) Apply Kcnq1 filter
  • CD3 (2) Apply CD3 filter
  • Nestin (2) Apply Nestin filter
  • IBA1 (2) Apply IBA1 filter
  • CD274 (1) Apply CD274 filter
  • ERBB2 (1) Apply ERBB2 filter
  • ACTA2 (1) Apply ACTA2 filter

Product

  • (-) Remove RNAscope 2.5 HD Duplex filter RNAscope 2.5 HD Duplex (158)
  • RNAscope 2.5 HD- Red (1) Apply RNAscope 2.5 HD- Red filter

Research area

  • Cancer (33) Apply Cancer filter
  • Neuroscience (33) Apply Neuroscience filter
  • Other (20) Apply Other filter
  • Inflammation (19) Apply Inflammation filter
  • Stem Cells (11) Apply Stem Cells filter
  • Development (9) Apply Development filter
  • Infectious Disease (9) Apply Infectious Disease filter
  • Developmental (7) Apply Developmental filter
  • Covid (5) Apply Covid filter
  • Infectious (5) Apply Infectious filter
  • Kidney (5) Apply Kidney filter
  • Metabolism (2) Apply Metabolism filter
  • other: Aging (2) Apply other: Aging filter
  • Other: Endocrinology (2) Apply Other: Endocrinology filter
  • Other: Heart (2) Apply Other: Heart filter
  • Other: Liver Disease (2) Apply Other: Liver Disease filter
  • Stem cell (2) Apply Stem cell filter
  • Alzheimer's Disease (1) Apply Alzheimer's Disease filter
  • Bone (1) Apply Bone filter
  • diabetes (1) Apply diabetes filter
  • Disease Development (1) Apply Disease Development filter
  • Fibrosis (1) Apply Fibrosis filter
  • HIV (1) Apply HIV filter
  • Immunotherapy (1) Apply Immunotherapy filter
  • Infectious Disease: Mycoplasma pneumoniae (1) Apply Infectious Disease: Mycoplasma pneumoniae filter
  • Injury (1) Apply Injury filter
  • Intestine (1) Apply Intestine filter
  • Keratin (1) Apply Keratin filter
  • LncRNAs (1) Apply LncRNAs filter
  • Molecular Biology (1) Apply Molecular Biology filter
  • Muscle (1) Apply Muscle filter
  • Other: Parasite Biology (1) Apply Other: Parasite Biology filter
  • Other: Gut (1) Apply Other: Gut filter
  • Other: Hair Growth (1) Apply Other: Hair Growth filter
  • Other: Kidney (1) Apply Other: Kidney filter
  • Other: Reproduction (1) Apply Other: Reproduction filter
  • Pain (1) Apply Pain filter
  • Pharmacology (1) Apply Pharmacology filter
  • Proteasome inhibitor (1) Apply Proteasome inhibitor filter
  • Pulmonary disease (1) Apply Pulmonary disease filter
  • Regeneration (1) Apply Regeneration filter
  • Reproduction (1) Apply Reproduction filter
  • Retroviruses (1) Apply Retroviruses filter
  • Sensory Neuroscience (1) Apply Sensory Neuroscience filter
  • Sequencing (1) Apply Sequencing filter
  • Transcriptomics (1) Apply Transcriptomics filter
  • Tuberculosis (1) Apply Tuberculosis filter
  • Vaccine Development (1) Apply Vaccine Development filter
  • Vet path (1) Apply Vet path filter
  • Virotherapy (1) Apply Virotherapy filter

Category

  • Publications (158) Apply Publications filter
wnt16 regulates spine and muscle morphogenesis through parallel signals from notochord and dermomyotome

PLoS genetics

2022 Nov 01

Watson, CJ;Tang, WJ;Rojas, MF;Fiedler, IAK;Morfin Montes de Oca, E;Cronrath, AR;Callies, LK;Swearer, AA;Ahmed, AR;Sethuraman, V;Addish, S;Farr, GH;Gómez, AE;Rai, J;Monstad-Rios, AT;Gardiner, EM;Karasik, D;Maves, L;Busse, B;Hsu, YH;Kwon, RY;
PMID: 36346812 | DOI: 10.1371/journal.pgen.1010496

Bone and muscle are coupled through developmental, mechanical, paracrine, and autocrine signals. Genetic variants at the CPED1-WNT16 locus are dually associated with bone- and muscle-related traits. While Wnt16 is necessary for bone mass and strength, this fails to explain pleiotropy at this locus. Here, we show wnt16 is required for spine and muscle morphogenesis in zebrafish. In embryos, wnt16 is expressed in dermomyotome and developing notochord, and contributes to larval myotome morphology and notochord elongation. Later, wnt16 is expressed at the ventral midline of the notochord sheath, and contributes to spine mineralization and osteoblast recruitment. Morphological changes in wnt16 mutant larvae are mirrored in adults, indicating that wnt16 impacts bone and muscle morphology throughout the lifespan. Finally, we show that wnt16 is a gene of major effect on lean mass at the CPED1-WNT16 locus. Our findings indicate that Wnt16 is secreted in structures adjacent to developing bone (notochord) and muscle (dermomyotome) where it affects the morphogenesis of each tissue, thereby rendering wnt16 expression into dual effects on bone and muscle morphology. This work expands our understanding of wnt16 in musculoskeletal development and supports the potential for variants to act through WNT16 to influence bone and muscle via parallel morphogenetic processes.
The neuronal tyrosine kinase receptor ligand ALKAL2 mediates persistent pain

The Journal of clinical investigation

2022 May 24

Defaye, M;Iftinca, MC;Gadotti, VM;Basso, L;Abdullah, NS;Cumenal, M;Agosti, F;Hassan, A;Flynn, R;Martin, J;Soubeyre, V;Poulen, G;Lonjon, N;Vachiery-Lahaye, F;Bauchet, L;Mery, PF;Bourinet, E;Zamponi, GW;Altier, C;
PMID: 35608912 | DOI: 10.1172/JCI154317

The anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase known for its oncogenic potential and involved in the development of the peripheral and central nervous system. ALK receptor ligands, ALKAL1 and ALKAL2 were recently found to promote neuronal differentiation and survival. Here we show that inflammation or injury enhanced ALKAL2 expression in a subset of TRPV1+ sensory neurons. Notably, ALKAL2 was particularly enriched in both mice and human peptidergic nociceptors, yet weakly expressed in non peptidergic, large diameter myelinated neurons or in the brain. Using a co-culture expression system, we found that nociceptors exposed to ALKAL2 exhibited heightened excitability and neurite outgrowth. Intraplantar Complete Freund's adjuvant (CFA) or intrathecal infusion of recombinant ALKAL2 led to ALK phosphorylation in the lumbar dorsal horn of the spinal cord. Finally, depletion of ALKAL2 in dorsal root ganglia or blocking ALK with clinically available compounds Crizotinib or Lorlatinib, reversed thermal hyperalgesia and mechanical allodynia induced by inflammation or nerve injury, respectively. Overall, our work uncovers the ALKAL2-ALK signaling axis as a central regulator of nociceptor-induced sensitization. We propose that clinically approved ALK inhibitors used for Non-Small Cell Lung Cancer and neuroblastomas, could be repurposed to treat persistent pain conditions.
Identification of the receptor of oncolytic virus M1 as a therapeutic predictor for multiple solid tumors

Signal transduction and targeted therapy

2022 Apr 08

Song, D;Jia, X;Liu, X;Hu, L;Lin, K;Xiao, T;Qiao, Y;Zhang, J;Dan, J;Wong, C;Hu, C;Sai, K;Gong, S;Sander, M;Shen, R;Chen, X;Xiao, X;Chen, J;Zhang, Y;Wei, C;Xiao, X;Liang, J;Zhang, Q;Hu, J;Zhu, W;Yan, G;Lin, Y;Cai, J;
PMID: 35393389 | DOI: 10.1038/s41392-022-00921-3

Over the last decade, oncolytic virus (OV) therapy has shown its promising potential in tumor treatment. The fact that not every patient can benefit from it highlights the importance for defining biomarkers that help predict patients' responses. As particular self-amplifying biotherapeutics, the anti-tumor effects of OVs are highly dependent on the host factors for viral infection and replication. By using weighted gene co-expression network analysis (WGCNA), we found matrix remodeling associated 8 (MXRA8) is positively correlated with the oncolysis induced by oncolytic virus M1 (OVM). Consistently, MXRA8 promotes the oncolytic efficacy of OVM in vitro and in vivo. Moreover, the interaction of MXRA8 and OVM studied by single-particle cryo-electron microscopy (cryo-EM) showed that MXRA8 directly binds to this virus. Therefore, MXRA8 acts as the entry receptor of OVM. Pan-cancer analysis showed that MXRA8 is abundant in most solid tumors and is highly expressed in tumor tissues compared with adjacent normal ones. Further study in cancer cell lines and patient-derived tumor tissues revealed that the tumor selectivity of OVM is predominantly determined by a combinational effect of the cell membrane receptor MXRA8 and the intracellular factor, zinc-finger antiviral protein (ZAP). Taken together, our study may provide a novel dual-biomarker for precision medicine in OVM therapy.
Simultaneous Multiplexed Imaging of Biomolecules in Transgenic Mouse Brain Tissues Using Mass Spectrometry Imaging: A Multi-omic Approach

Analytical chemistry

2022 Jun 13

Le, MT;Shon, HK;Nguyen, HP;Lee, CH;Kim, KS;Na, HK;Lee, TG;
PMID: 35696262 | DOI: 10.1021/acs.analchem.2c00676

The importance of multi-omic-based approaches to better understand diverse pathological mechanisms including neurodegenerative diseases has emerged. Spatial information can be of great help in understanding how biomolecules interact pathologically and in elucidating target biomarkers for developing therapeutics. While various analytical methods have been attempted for imaging-based biomolecule analysis, a multi-omic approach to imaging remains challenging due to the different characteristics of biomolecules. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a powerful tool due to its sensitivity, chemical specificity, and high spatial resolution in visualizing chemical information in cells and tissues. In this paper, we suggest a new strategy to simultaneously obtain the spatial information of various kinds of biomolecules that includes both labeled and label-free approaches using ToF-SIMS. The enzyme-assisted labeling strategy for the targets of interest enables the sensitive and specific imaging of large molecules such as peptides, proteins, and mRNA, a task that has been, to date, difficult for any MS analysis. Together with the strength of the analytical performance of ToF-SIMS in the label-free tissue imaging of small biomolecules, the proposed strategy allows one to simultaneously obtain integrated information of spatial distribution of metabolites, lipids, peptides, proteins, and mRNA at a high resolution in a single measurement. As part of the suggested strategy, we present a sample preparation method suitable for MS imaging. Because a comprehensive method to examine the spatial distribution of multiple biomolecules in tissues has remained elusive, our strategy can be a useful tool to support the understanding of the interactions of biomolecules in tissues as well as pathological mechanisms.
Comparison of two different toxin-induced kidney fibrosis models in terms of inflammatory responses

Toxicology

2021 Oct 04

Yang, Y;Ha, S;Jeong, S;Jang, CW;Kim, J;Im, DS;Chung, HY;Chung, KW;
PMID: 34619300 | DOI: 10.1016/j.tox.2021.152973

Chronic kidney disease (CKD) is characterized by persistent abnormalities in kidney function, accompanied by structural changes. Interstitial fibrosis, characterized by the accumulation of extracellular matrix (ECM) proteins, is frequently detected during CKD development. Given the multiple underlying causes of CKD, numerous animal models have been developed to advance our understanding of human nephropathy. Herein, we compared two reliable toxin-induced mouse kidney fibrosis models in terms of fibrosis and inflammation. Administration of folic acid (250 mg/kg, intraperitoneal injection) or an adenine diet (0.25 % for three weeks) afforded similar effects on kidney function, as detected by increased serum nitrogen levels. In addition, the kidneys exhibited a similar extent of tubule dilation and kidney damage. The degree of fibrosis was compared using various biological methods. Although both models developed a significant fibrotic phenotype, the adenine diet-fed model showed a marginally higher increase in fibrosis than the folic acid model, as reflected by increased kidney ECM gene and protein levels. We further compared inflammatory responses in the kidneys. Interestingly, pro-inflammatory responses, including cytokine expression and immune cell infiltration, were significantly increased in adenine diet-fed kidneys. Furthermore, collagen expression was identified in the macrophage-infiltrated region, implying the importance of inflammation in fibrogenesis. Collectively, we observed that the adenine diet-fed kidney fibrosis model presented a higher inflammatory response with increased fibrosis when compared with the folic acid-induced kidney fibrosis model, indicating the importance of the inflammatory response in fibrosis development.
A Newly Discovered Antifibrotic Pathway Regulated by Two Fatty Acid Receptors

Am J Pathol.

2018 Feb 15

Gagnon L, Leduc M, Thibodeau JF, Zhang MZ, Grouix B, Sarra-Bournet F, Gagnon W, Hince K, Tremblay M, Geerts L, Kennedy CRJ, Hébert RL, Gutsol A, Holterman CE, Kamto E, Gervais L, Ouboudinar J, Richard J, Felton A, Laverdure A, Simard JC, Létourneau S, Clo
PMID: 29454750 | DOI: 10.1016/j.ajpath.2018.01.009

Numerous clinical conditions can lead to organ fibrosis and functional failure. There is a great need for therapies that could effectively target pathophysiological pathways involved in fibrosis. GPR40 and GPR84 are G protein-coupled receptors with free fatty acid ligands and are associated with metabolic and inflammatory disorders. Although GPR40 and GPR84 are involved in diverse physiological processes, no evidence has demonstrated the relevance of GPR40 and GPR84 in fibrosis pathways. Using PBI-4050 (3-pentylbenzeneacetic acid sodium salt), a synthetic analog of a medium-chain fatty acid that displays agonist and antagonist ligand affinity toward GPR40 and GPR84, respectively, we uncovered an antifibrotic pathway involving these receptors. In experiments using Gpr40- and Gpr84-knockout mice in models of kidney fibrosis (unilateral ureteral obstruction, long-term postacute ischemic injury, and adenine-induced chronic kidney disease), we found that GPR40 is protective and GPR84 is deleterious in these diseases. Moreover, through binding to GPR40 and GPR84, PBI-4050 significantly attenuated fibrosis in many injury contexts, as evidenced by the antifibrotic activity observed in kidney, liver, heart, lung, pancreas, and skin fibrosis models. Therefore, GPR40 and GPR84 may represent promising molecular targets in fibrosis pathways. We conclude that PBI-4050 is a first-in-class compound that may be effective for managing inflammatory and fibrosis-related diseases.

Murine Coronavirus Disease 2019 Lethality Is Characterized by Lymphoid Depletion Associated with Suppressed Antigen-Presenting Cell Functionality

The American journal of pathology

2023 Apr 05

Lee, YJ;Seok, SH;Lee, NY;Choi, HJ;Lee, YW;Chang, HJ;Hwang, JY;On, DI;Noh, HA;Lee, SB;Kwon, HK;Yun, JW;Shin, JS;Seo, JY;Nam, KT;Lee, H;Lee, HY;Park, JW;Seong, JK;
PMID: 37024046 | DOI: 10.1016/j.ajpath.2023.03.008

The disease severity of coronavirus disease 2019 (COVID-19) varies considerably from asymptomatic to serious, with fatal complications associated with dysregulation of innate and adaptive immunity. Lymphoid depletion in lymphoid tissues and lymphocytopenia have both been associated with poor disease outcomes in patients with COVID-19, but the mechanisms involved remain elusive. In this study, human angiotensin-converting enzyme 2 (hACE2) transgenic mouse models susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were used to investigate the characteristics and determinants of lethality associated with the lymphoid depletion observed in SARS-CoV-2 infection. The lethality of Wuhan SARS-CoV-2 infection in K18-hACE2 mice was characterized by severe lymphoid depletion and apoptosis in lymphoid tissues related to fatal neuroinvasion. The lymphoid depletion was associated with a decreased number of antigen-presenting cells (APCs) and their suppressed functionality below basal levels. Lymphoid depletion with reduced APC function was a specific feature observed in SARS-CoV-2 infection but not in influenza A infection and had the greatest prognostic value for disease severity in murine COVID-19. Comparison of transgenic mouse models resistant and susceptible to SARS-CoV-2 infection revealed that suppressed APC function could be determined by the hACE2 expression pattern and interferon-related signaling. Thus, we demonstrated that lymphoid depletion associated with suppressed APC function characterizes the lethality of COVID-19 mouse models. Our data also suggest a potential therapeutic approach to prevent the severe progression of COVID-19 by enhancing APC functionality.
RESTRICTION OF γ34.5-DELETED ONCOLYTIC HERPES SIMPLEX VIRUS REPLICATION IN GLIOBLASTOMA STEM-LIKE CELLS

Journal of Virology

2018 May 23

Peters C, Paget M, Tshilenge KT, Saha D, Antoszczyk S, Baars A, Frost T, Martuza RL, Wakimoto H, Rabkin SD.
PMID: - | DOI: 10.1128/JVI.00246-18

Oncolytic viruses, including herpes simplex viruses (HSVs), are a new class of cancer therapeutic engineered to infect and kill cancer cells, while sparing normal tissue. To ensure that oncolytic HSV (oHSV) is safe in the brain, all oHSVs in clinical trial for glioma lack the γ34.5 genes responsible for neurovirulence. However, loss of γ34.5 attenuates growth in cancer cells. Glioblastoma (GBM) is a lethal brain tumor that is heterogeneous and contains a subpopulation of cancer stem cells, termed GBM stem-like cells (GSCs), that likely promote tumor progression and recurrence. GSCs and matched serum-cultured GBM cells (ScGCs), representative of bulk or differentiated tumor cells, were isolated from the same patient tumor specimens. ScGCs are permissive to γ34.5-deleted oHSV replication and cell killing, while patient-matched GSCs were not, implying an underlying biological difference between stem and bulk cancer cells. GSCs specifically restrict the synthesis of HSV1 true late (TL) proteins, without affecting viral DNA replication or transcription of TL genes. A global shutoff of cellular protein synthesis also occurs late after γ34.5-deleted oHSV infection of GSCs, but does not affect the synthesis of early and leaky late viral proteins. Levels of phosphorylated eIF2α and eIF4E do not correlate with cell permissivity. Expression of Us11 in GSCs rescues replication of γ34.5-deleted oHSV. The difference in permissivity between GSCs and ScGCs to γ34.5-deleted oHSV illustrates a selective translational regulatory pathway in GSCs that may be operative in other stem-like cells and has implications for creating oHSVs.

IMPORTANCE Herpes simplex virus (HSV) can be genetically engineered to endow cancer selective replication and oncolytic activity. γ34.5, a key neurovirulence gene, has been deleted in all oncolytic HSVs in clinical trial for glioma. Glioblastoma stem-like cells (GSCs) are a subpopulation of tumor cells thought to drive tumor heterogeneity and therapeutic resistance. GSCs are non-permissive for γ34.5-deleted HSV, while non-stem-like cancer cells from the same patient tumors are permissive. GSCs restrict true late protein synthesis, despite normal viral DNA replication and transcription of all kinetic classes. This is specific for true late translation, as early and leaky late transcripts are translated late in infection, notwithstanding shutoff of cellular protein synthesis. Expression of Us11 in GSCs rescues the replication of γ34.5-deleted HSV. We have identified a cell type specific innate response to HSV1 that limits oncolytic activity in glioblastoma.

Enhanced TH17 Responses in Patients with IL10 Receptor Deficiency and Infantile-onset IBD.

Inflamm Bowel Dis. 2017 Nov;23(11):1950-1961.

2017 Nov 23

Shouval DS, Konnikova L, Griffith AE, Wall SM, Biswas A, Werner L, Nunberg M, Kammermeier J, Goettel JA, Anand R, Chen H, Weiss B, Li J, Loizides A, Yerushalmi B, Yanagi T, Beier R, Conklin LS, Ebens CL, Santos FGMS, Sherlock M, Goldsmith JD, Kotlarz D, Glover SC, Shah N, Bousvaros A, Uhlig HH, Muise AM, Klein C, Snapper SB.
PMID: 29023267 | DOI: 10.1097/MIB.0000000000001270

Abstract BACKGROUND: IL10 receptor (IL10R) deficiency causes severe infantile-onset inflammatory bowel disease. Intact IL10R-dependent signals have been shown to be important for innate and adaptive immune cell functions in mice. We have previously reported a key role of IL10 in the generation and function of human anti-inflammatory macrophages. Independent of innate immune cell defects, the aim of the current study was to determine the role of IL10R signaling in regulating human CD4 T-cell function. METHODS: Peripheral blood mononuclear cells and intestinal biopsies cells were collected from IL10/IL10R-deficient patients and controls. Frequencies of CD4 T-cell subsets, naive T-cell proliferation, regulatory T cell (Treg)-mediated suppression, and Treg and TH17 generation were determined by flow cytometry. Transcriptional profiling was performed by NanoString and quantitative real-time polymerase chain reaction. RNA in situ hybridization was used to determine the quantities of various transcripts in intestinal mucosa. RESULTS: Analysis of 16 IL10- and IL10R-deficient patients demonstrated similar frequencies of peripheral blood and intestinal Tregs, compared with control subjects. In addition, in vitro Treg suppression of CD4 T-cell proliferation and generation of Treg were not dependent on IL10R signaling. However, IL10R-deficient T naive cells exhibited higher proliferative capacity, a strong TH17 signature, and an increase in polarization toward TH17 cells, compared with controls. Moreover, the frequency of TH17 cells was increased in the colon and ileum of IL10R-deficient patients. Finally, we show that stimulation of IL10R-deficient Tregs in the presence of IL1β leads to enhanced production of IL17A. CONCLUSIONS: IL10R signaling regulates TH17 polarization and T-cell proliferation in humans but is not required for the generation and in vitro suppression of Tregs. Therapies targeting the TH17 axis might be beneficial for IL10- and IL10R-deficient patients as a bridge to allogeneic hematopoietic stem cell transplantation.
α-MSH increases the activity of MC3R-expressing neurons in the ventral tegmental area.

J Physiol.

2019 May 04

West KS, Lu C, Olson DP, Roseberry AG.
PMID: 31054267 | DOI: 10.1113/JP277193

Abstract

KEY POINTS:

Alpha-melanocyte stimulating hormone (α-MSH) is an anorexigenic peptide, and injection of the α-MSH analog MTII into the ventral tegmental area (VTA) decreases food and sucrose intake and food reward. Melanocortin-3 receptors (MC3R) are highly expressed in the VTA, suggesting that the effects of intra-VTA α-MSH may be mediated by α-MSH changing the activity of MC3R-expressing VTA neurons. α-MSH increased the firing rate of MC3R VTA neurons in acute brain slices from mice, but did not affect the firing rate of non-MC3R VTA neurons. The α-MSH induced increase in MC3R neuron firing rate is likely activity dependent, and was independent of fast synaptic transmission and intracellular Ca2+ levels. These results help us to better understand how α-MSH acts in the VTA to affect feeding and other dopamine dependent behaviors.

ABSTRACT:

The mesocorticolimbic dopamine system, the brain's reward system, regulates multiple behaviors including food intake and food reward. There is substantial evidence that the melanocortin system of the hypothalamus, an important neural circuit controlling feeding and body weight, interacts with the mesocorticolimbic dopamine system to affect feeding, food reward, and body weight. For example, melanocortin-3 receptors (MC3Rs) are expressed in the ventral tegmental area (VTA), and our lab previously showed that intra-VTA injection of the MC3R agonist, MTII, decreases home-cage food intake and operant responding for sucrose pellets. The cellular mechanisms underlying the effects of intra-VTA α-MSH on feeding and food reward are unknown, however. To determine how α-MSH acts in the VTA to affect feeding, we performed electrophysiological recordings in acute brain slices from mice expressing EYFP in MC3R neurons to test how α-MSH affects the activity of VTA MC3R neurons. α-MSH significantly increased the firing rate of VTA MC3R neurons without altering the activity of non-MC3R expressing VTA neurons. In addition, the α-MSH-induced increase in MC3R neuron activity was independent of fast synaptic transmission and intracellular Ca2+ levels. Finally, we show that the effect of α-MSH on MC3R neuron firing rate is likely activity dependent. Overall, these studies provide an important advancement in the understanding of how α-MSH acts in the VTA to affect feeding and food reward. 

GLP-1R signaling directly activates arcuate nucleus kisspeptin action in brain slices but does not rescue LH inhibition in OVX mice during negative energy balance

eNeuro

2017 Jan 05

Heppner KM, Baquero AF, Bennett CM, Lindsley SR, Kirigiti MA, Bennett B, Bosch MA, Mercer AJ, Rønnekleiv OK, True C, Grove KL, Smith MS.
PMID: - | DOI: 10.1523/ENEURO.0198-16.2016

Kisspeptin (Kiss1) neurons in the hypothalamic arcuate nucleus (ARC) are key components of the hypothalamic-pituitary-gonadal axis, as they regulate the basal pulsatile release of gonadotropin releasing hormone (GnRH). ARC Kiss1 action is dependent on energy status and unmasking metabolic factors responsible for modulating ARC Kiss1 neurons is of great importance. One possible factor is glucagon-like peptide-1 (GLP-1), an anorexigenic neuropeptide produced by brainstem preproglucagon neurons. As GLP fiber projections and the GLP-1 receptor (GLP-1R) are abundant in the ARC, we hypothesized that GLP-1R signaling could modulate ARC Kiss1 action. Using ovariectomized (OVX) mice, we found that GLP-producing fibers come in close apposition with ARC Kiss1 neurons; these neurons also contain Glp1r mRNA. Electrophysiological recordings revealed that liraglutide (a long-acting GLP-1R agonist) increased action potential firing and caused a direct membrane depolarization of ARC Kiss1 cells in brain slices. We determined that brainstem preproglucagon mRNA is decreased following a 48 h fast in mice, a negative energy state in which ARC Kiss1 expression and downstream GnRH/luteinizing hormone (LH) release are potently suppressed. However, activation of GLP-1R signaling in fasted mice with liraglutide was not sufficient to prevent LH inhibition. Furthermore, chronic central infusions of the GLP-1R antagonist, exendin (9-39) in ad libitum fed mice did not alter ARC Kiss1 mRNA or plasma LH. As a whole, these data identify a novel interaction of the GLP-1 system with ARC Kiss1 neurons but indicate that CNS GLP-1R signaling alone is not critical for the maintenance of LH during fasting or normal feeding.

Significance Statement Reproductive dysfunction is associated with metabolic imbalance, and identifying the underlying molecular mechanisms linking metabolic status with reproductive function is of great importance. Kisspeptin neurons (Kiss1) located in the arcuate nucleus of the hypothalamus (ARC) are essential for fertility and are potently inhibited during negative energy balance; this inhibition occurs in the presence or absence of ovarian steroids. Preproglucagon-expressing neurons located in the brainstem send abundant fiber projections to the ARC where they release the anorexigenic neuropeptide, glucagon-like peptide-1 (GLP-1). The aim of these studies was to determine the interaction of the CNS GLP-1 system with ARC Kiss1 activity to potentially provide a link between systems that control energy balance with those that control reproductive neuroendocrine output.

CD206+ tendon resident macrophages and their potential crosstalk with fibroblasts and the ECM during tendon growth and maturation

Frontiers in Physiology

2023 Feb 22

Bautista, C;Srikumar, A;Tichy, E;Qian, G;Jiang, X;Qin, L;Mourkioti, F;Dyment, N;
| DOI: 10.3389/fphys.2023.1122348

Resident macrophages exist in a variety of tissues, including tendon, and play context-specific roles in their tissue of residence. In this study, we define the spatiotemporal distribution and phenotypic profile of tendon resident macrophages and their crosstalk with neighboring tendon fibroblasts and the extracellular matrix (ECM) during murine tendon development, growth, and homeostasis. Fluorescent imaging of cryosections revealed that F4/80+ tendon resident macrophages reside adjacent to Col1a1-CFP+ Scx-GFP+ fibroblasts within the tendon fascicle from embryonic development (E15.5) into adulthood (P56). Through flow cytometry and qPCR, we found that these tendon resident macrophages express several well-known macrophage markers, including Adgre1 (F4/80), Mrc1 (CD206), Lyve1, and Folr2, but not Ly-6C, and express the Csf1r-EGFP (“MacGreen”) reporter. The proportion of Csf1r-EGFP+ resident macrophages in relation to the total cell number increases markedly during early postnatal growth, while the density of macrophages per mm2 remains constant during this same time frame. Interestingly, proliferation of resident macrophages is higher than adjacent fibroblasts, which likely contributes to this increase in macrophage proportion. The expression profile of tendon resident macrophages also changes with age, with increased pro-inflammatory and anti-inflammatory cytokine expression in P56 compared to P14 macrophages. In addition, the expression profile of limb tendon resident macrophages diverges from that of tail tendon resident macrophages, suggesting differential phenotypes across anatomically and functionally different tendons. As macrophages are known to communicate with adjacent fibroblasts in other tissues, we conducted ligand-receptor analysis and found potential two-way signaling between tendon fibroblasts and resident macrophages. Tendon fibroblasts express high levels of Csf1, which encodes macrophage colony stimulating factor (M-CSF) that acts on the CSF1 receptor (CSF1R) on macrophages. Importantly, Csf1r-expressing resident macrophages preferentially localize to Csf1-expressing fibroblasts, supporting the “nurturing scaffold” model for tendon macrophage patterning. Lastly, we found that tendon resident macrophages express high levels of ECM-related genes, including Mrc1 (mannose receptor), Lyve1 (hyaluronan receptor), Lair1 (type I collagen receptor), Ctss (elastase), and Mmp13 (collagenase), and internalize DQ Collagen in explant cultures. Overall, our study provides insights into the potential roles of tendon resident macrophages in regulating fibroblast phenotype and the ECM during tendon growth.

Pages

  • « first
  • ‹ previous
  • …
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?