Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (158)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (5) Apply TBD filter
  • Axin2 (4) Apply Axin2 filter
  • CD4 (4) Apply CD4 filter
  • CXCL10 (4) Apply CXCL10 filter
  • GFAP (4) Apply GFAP filter
  • Emr1 (4) Apply Emr1 filter
  • Wnt4 (3) Apply Wnt4 filter
  • Rspo3 (3) Apply Rspo3 filter
  • Lgr5 (3) Apply Lgr5 filter
  • Foxp3 (3) Apply Foxp3 filter
  • Sftpc (3) Apply Sftpc filter
  • Mc3r (3) Apply Mc3r filter
  • Cre (3) Apply Cre filter
  • SARS-CoV-2 (3) Apply SARS-CoV-2 filter
  • MEG3 (2) Apply MEG3 filter
  • Wnt16 (2) Apply Wnt16 filter
  • Fgfr3 (2) Apply Fgfr3 filter
  • CD68 (2) Apply CD68 filter
  • Cd8a (2) Apply Cd8a filter
  • COL1A1 (2) Apply COL1A1 filter
  • Rspo1 (2) Apply Rspo1 filter
  • Il10 (2) Apply Il10 filter
  • CSF1 (2) Apply CSF1 filter
  • Dll1 (2) Apply Dll1 filter
  • TH (2) Apply TH filter
  • FFAR1 (2) Apply FFAR1 filter
  • IL33 (2) Apply IL33 filter
  • JAG1 (2) Apply JAG1 filter
  • Hopx (2) Apply Hopx filter
  • PECAM1 (2) Apply PECAM1 filter
  • Spp1 (2) Apply Spp1 filter
  • MKI67 (2) Apply MKI67 filter
  • Npy (2) Apply Npy filter
  • PDGFRA (2) Apply PDGFRA filter
  • Cxcl1 (2) Apply Cxcl1 filter
  • Pomc (2) Apply Pomc filter
  • APOL1 (2) Apply APOL1 filter
  • IL-8 (2) Apply IL-8 filter
  • TNF-α (2) Apply TNF-α filter
  • Il-6 (2) Apply Il-6 filter
  • k (2) Apply k filter
  • l (2) Apply l filter
  • Cx3cr1 (2) Apply Cx3cr1 filter
  • Kcnq1 (2) Apply Kcnq1 filter
  • CD3 (2) Apply CD3 filter
  • Nestin (2) Apply Nestin filter
  • IBA1 (2) Apply IBA1 filter
  • CD274 (1) Apply CD274 filter
  • ERBB2 (1) Apply ERBB2 filter
  • ACTA2 (1) Apply ACTA2 filter

Product

  • (-) Remove RNAscope 2.5 HD Duplex filter RNAscope 2.5 HD Duplex (158)
  • RNAscope 2.5 HD- Red (1) Apply RNAscope 2.5 HD- Red filter

Research area

  • Cancer (33) Apply Cancer filter
  • Neuroscience (33) Apply Neuroscience filter
  • Other (20) Apply Other filter
  • Inflammation (19) Apply Inflammation filter
  • Stem Cells (11) Apply Stem Cells filter
  • Development (9) Apply Development filter
  • Infectious Disease (9) Apply Infectious Disease filter
  • Developmental (7) Apply Developmental filter
  • Covid (5) Apply Covid filter
  • Infectious (5) Apply Infectious filter
  • Kidney (5) Apply Kidney filter
  • Metabolism (2) Apply Metabolism filter
  • other: Aging (2) Apply other: Aging filter
  • Other: Endocrinology (2) Apply Other: Endocrinology filter
  • Other: Heart (2) Apply Other: Heart filter
  • Other: Liver Disease (2) Apply Other: Liver Disease filter
  • Stem cell (2) Apply Stem cell filter
  • Alzheimer's Disease (1) Apply Alzheimer's Disease filter
  • Bone (1) Apply Bone filter
  • diabetes (1) Apply diabetes filter
  • Disease Development (1) Apply Disease Development filter
  • Fibrosis (1) Apply Fibrosis filter
  • HIV (1) Apply HIV filter
  • Immunotherapy (1) Apply Immunotherapy filter
  • Infectious Disease: Mycoplasma pneumoniae (1) Apply Infectious Disease: Mycoplasma pneumoniae filter
  • Injury (1) Apply Injury filter
  • Intestine (1) Apply Intestine filter
  • Keratin (1) Apply Keratin filter
  • LncRNAs (1) Apply LncRNAs filter
  • Molecular Biology (1) Apply Molecular Biology filter
  • Muscle (1) Apply Muscle filter
  • Other: Parasite Biology (1) Apply Other: Parasite Biology filter
  • Other: Gut (1) Apply Other: Gut filter
  • Other: Hair Growth (1) Apply Other: Hair Growth filter
  • Other: Kidney (1) Apply Other: Kidney filter
  • Other: Reproduction (1) Apply Other: Reproduction filter
  • Pain (1) Apply Pain filter
  • Pharmacology (1) Apply Pharmacology filter
  • Proteasome inhibitor (1) Apply Proteasome inhibitor filter
  • Pulmonary disease (1) Apply Pulmonary disease filter
  • Regeneration (1) Apply Regeneration filter
  • Reproduction (1) Apply Reproduction filter
  • Retroviruses (1) Apply Retroviruses filter
  • Sensory Neuroscience (1) Apply Sensory Neuroscience filter
  • Sequencing (1) Apply Sequencing filter
  • Transcriptomics (1) Apply Transcriptomics filter
  • Tuberculosis (1) Apply Tuberculosis filter
  • Vaccine Development (1) Apply Vaccine Development filter
  • Vet path (1) Apply Vet path filter
  • Virotherapy (1) Apply Virotherapy filter

Category

  • Publications (158) Apply Publications filter
Jagged1/Notch2 controls kidney fibrosis via Tfam-mediated metabolic reprogramming.

PLoS Biol.

2018 Aug 18

Huang S, Park J, Qiu C, Chung K, Li SY, Sirin Y, Han SH, Taylor V, Zimber-Strobl U, Susztak K.
PMID: 30226866 | DOI: 10.1371/journal.pbio.2005233

While Notch signaling has been proposed to play a key role in fibrosis, the direct molecular pathways targeted by Notch signaling and the precise ligand and receptor pair that are responsible for kidney disease remain poorly defined. In this study, we found that JAG1 and NOTCH2 showed the strongest correlation with the degree of interstitial fibrosis in a genome-wide expression analysis of a large cohort of human kidney samples. Transcript analysis of mouse kidney disease models, including folic-acid (FA)-induced nephropathy, unilateral ureteral obstruction (UUO), or apolipoprotein L1 (APOL1)-associated kidney disease, indicated that Jag1 and Notch2 levels were higher in all analyzed kidney fibrosis models. Mice with tubule-specific deletion of Jag1 or Notch2 (Kspcre/Jag1flox/flox and Kspcre/Notch2flox/flox) had no kidney-specific alterations at baseline but showed protection from FA-induced kidney fibrosis. Tubule-specific genetic deletion of Notch1 and global knockout of Notch3 had no effect on fibrosis. In vitro chromatin immunoprecipitation experiments and genome-wide expression studies identified the mitochondrial transcription factor A (Tfam) as a direct Notch target. Re-expression of Tfam in tubule cells prevented Notch-induced metabolic and profibrotic reprogramming. Tubule-specific deletion of Tfam resulted in fibrosis. In summary, Jag1 and Notch2 play a key role in kidney fibrosis development by regulating Tfam expression and metabolic reprogramming.

Intravenous immunoglobulin (IVIg) or IVIg-treated macrophages reduce DSS-induced colitis by inducing macrophage IL-10 production.

Eur J Immunol.

2019 May 04

Kozicky LK, Menzies SC, Hotte N, Madsen KL, Sly LM.
PMID: 31054259 | DOI: 10.1002/eji.201848014

Intravenous immunoglobulin (IVIg) is used to treat immune-mediated diseases but its mechanism of action is poorly understood. We have reported that co-treatment with IVIg and lipopolysaccharide activates macrophages to produce large amounts of anti-inflammatory IL-10 in vitro. Thus, we asked whether IVIg-treated macrophages or IVIg could reduce intestinal inflammation in mice during dextran sulfate sodium (DSS)-induced colitis by inducing macrophage IL-10 production in vivo. Adoptive transfer of IVIg-treated macrophages reduces intestinal inflammation in mice and collagen accumulation post-DSS. IVIg treatment also reduces DSS-induced intestinal inflammation and its activity is dependent on the Fc portion of the antibody. Ex vivo, IVIg induces IL-10 production and reduces IL-12/23p40 and IL-1β production in colon explant cultures. Co-staining tissues for mRNA, we demonstrate that macrophages are the source of IL-10 in IVIg-treated mice; and using IL-10-GFP reporter mice, we demonstrate that IVIg induces IL-10 production by intestinal macrophages. Finally, IVIg-mediated protection is lost in mice deficient in macrophage IL-10 production (LysMcre+/- IL-10fl/fl mice). Together, our data demonstrate a novel, in vivo mechanism of action for IVIg. IVIg-treated macrophages or IVIg could be used to treat people with intestinal inflammation and may be particularly useful for people with inflammatory bowel disease, who are refractory to therapy.

Unique RNA signature of different lesion types in the brain white matter in progressive multiple sclerosis.

Acta Neuropathol Commun.

2019 Apr 25

Elkjaer ML, Frisch T, Reynolds R, Kacprowski T, Burton M, Kruse TA, Thomassen M, Baumbach J, Illes Z.
PMID: 31023379 | DOI: 10.1186/s40478-019-0709-3

The heterogeneity of multiple sclerosis is reflected by dynamic changes of different lesion types in the brain white matter (WM). To identify potential drivers of this process, we RNA-sequenced 73 WM areas from patients with progressive MS (PMS) and 25 control WM. Lesion endophenotypes were described by a computational systems medicine analysis combined with RNAscope, immunohistochemistry, and immunofluorescence. The signature of the normal-appearing WM (NAWM) was more similar to control WM than to lesions: one of the six upregulated genes in NAWM was CD26/DPP4 expressed by microglia. Chronic active lesions that become prominent in PMS had a signature that were different from all other lesion types, and were differentiated from them by two clusters of 62 differentially expressed genes (DEGs). An upcoming MS biomarker, CHI3L1 was among the top ten upregulated genes in chronic active lesions expressed by astrocytes in the rim. TGFβ-R2 was the central hub in a remyelination-related protein interaction network, and was expressed there by astrocytes. We used de novo networks enriched by unique DEGs to determine lesion-specific pathway regulation, i.e. cellular trafficking and activation in active lesions; healing and immune responses in remyelinating lesions characterized by the most heterogeneous immunoglobulin gene expression; coagulation and ion balance in inactive lesions; and metabolic changes in chronic active lesions. Because we found inverse differential regulation of particular genes among different lesion types, our data emphasize that omics related to MS lesions should be interpreted in the context of lesion pathology. Our data indicate that the impact of molecular pathways is substantially changing as different lesions develop. This was also reflected by the high number of unique DEGs that were more common than shared signatures. A special microglia subset characterized by CD26 may play a role in early lesion development, while astrocyte-derived TGFβ-R2 and TGFβ pathways may be drivers of repair in contrast to chronic tissue damage. The highly specific mechanistic signature of chronic active lesions indicates that as these lesions develop in PMS, the molecular changes are substantially skewed: the unique mitochondrial/metabolic changes and specific downregulation of molecules involved in tissue repair may reflect a stage of exhaustion.

Temporal characteristics of astrocytic activation in the TNC in a mice model of pain induced by recurrent dural infusion of inflammatory soup

The journal of headache and pain

2022 Jan 15

Zhang, L;Lu, C;Kang, L;Li, Y;Tang, W;Zhao, D;Yu, S;Liu, R;
PMID: 35033010 | DOI: 10.1186/s10194-021-01382-9

Astrocytic activation might play a significant role in the central sensitization of chronic migraine (CM). However, the temporal characteristics of the astrocytic activation in the trigeminal nucleus caudalis (TNC) and the molecular mechanism under the process remain not fully understood. Therefore, this study aims to investigate the duration and levels change of astrocytic activation and to explore the correlation between astrocytic activation and the levels change of cytokines release.We used a mice model induced by recurrent dural infusion of inflammatory soup (IS). The variation with time of IS-induced mechanical thresholds in the periorbital and hind paw plantar regions were evaluated using the von Frey filaments test. We detected the expression profile of glial fibrillary acidic protein (GFAP) in the TNC through immunofluorescence staining and western blot assay. We also investigated the variation with time of the transcriptional levels of GFAP and ionized calcium binding adapter molecule 1 (Iba1) through RNAscope in situ hybridization analysis. Then, we detected the variation with time of cytokines levels in the TNC tissue extraction and serum, including c-c motif chemokine ligand 2 (CCL2), c-c motif chemokine ligand 5 (CCL5), c-c motif chemokine ligand 7 (CCL7), c-c motif chemokine ligand 12 (CCL12), c-x-c motif chemokine ligand 1 (CXCL1), c-x-c motif chemokine ligand 13 (CXCL13), interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), macrophage colony-stimulating factor (M-CSF), interleukin 1beta (IL-1β), interleukin 6 (IL-6), interleukin 10 (IL-10), interleukin 17A (IL-17A).Recurrent IS infusion resulted in cutaneous allodynia in both the periorbital region and hind paw plantar, ranging from 5 d (after the second IS infusion) to 47 d (28 d after the last infusion) and 5 d to 26 d (7 d after the last infusion), respectively. The protein levels of GFAP and messenger ribonucleic acid (mRNA) levels of GFAP and Iba1 significantly increased and sustained from 20 d to 47 d (1 d to 28 d after the last infusion), which was associated with the temporal characteristics of astrocytic activation in the TNC. The CCL7 levels in the TNC decreased from 20 d to 47 d. But the CCL7 levels in serum only decreased on 20 d (1 d after the last infusion). The CCL12 levels in the TNC decreased on 22 d (3 d after the last infusion) and 33 d (14 d after the last infusion). In serum, the CCL12 levels only decreased on 22 d. The IL-10 levels in the TNC increased on 20 d.Our results indicate that the astrocytic activation generated and sustained in the IS-induced mice model from 1 d to 28 d after the last infusion and may contribute to the pathology through modulating CCL7, CCL12, and IL-10 release.
SARS-CoV-2 Infects Endothelial Cells In Vivo and In Vitro

Frontiers in cellular and infection microbiology

2021 Jul 06

Liu, F;Han, K;Blair, R;Kenst, K;Qin, Z;Upcin, B;Wörsdörfer, P;Midkiff, CC;Mudd, J;Belyaeva, E;Milligan, NS;Rorison, TD;Wagner, N;Bodem, J;Dölken, L;Aktas, BH;Vander Heide, RS;Yin, XM;Kolls, JK;Roy, CJ;Rappaport, J;Ergün, S;Qin, X;
PMID: 34307198 | DOI: 10.3389/fcimb.2021.701278

SARS-CoV-2 infection can cause fatal inflammatory lung pathology, including thrombosis and increased pulmonary vascular permeability leading to edema and hemorrhage. In addition to the lung, cytokine storm-induced inflammatory cascade also affects other organs. SARS-CoV-2 infection-related vascular inflammation is characterized by endotheliopathy in the lung and other organs. Whether SARS-CoV-2 causes endotheliopathy by directly infecting endothelial cells is not known and is the focus of the present study. We observed 1) the co-localization of SARS-CoV-2 with the endothelial cell marker CD31 in the lungs of SARS-CoV-2-infected mice expressing hACE2 in the lung by intranasal delivery of adenovirus 5-hACE2 (Ad5-hACE2 mice) and non-human primates at both the protein and RNA levels, and 2) SARS-CoV-2 proteins in endothelial cells by immunogold labeling and electron microscopic analysis. We also detected the co-localization of SARS-CoV-2 with CD31 in autopsied lung tissue obtained from patients who died from severe COVID-19. Comparative analysis of RNA sequencing data of the lungs of infected Ad5-hACE2 and Ad5-empty (control) mice revealed upregulated KRAS signaling pathway, a well-known pathway for cellular activation and dysfunction. Further, we showed that SARS-CoV-2 directly infects mature mouse aortic endothelial cells (AoECs) that were activated by performing an aortic sprouting assay prior to exposure to SARS-CoV-2. This was demonstrated by co-localization of SARS-CoV-2 and CD34 by immunostaining and detection of viral particles in electron microscopic studies. Moreover, the activated AoECs became positive for ACE-2 but not quiescent AoECs. Together, our results indicate that in addition to pneumocytes, SARS-CoV-2 also directly infects mature vascular endothelial cells in vivo and ex vivo, which may contribute to cardiovascular complications in SARS-CoV-2 infection, including multipleorgan failure.
B cells oppose Mycoplasma pneumoniae vaccine enhanced disease and limit bacterial colonization of the lungs

NPJ vaccines

2022 Oct 31

Gavitt, TD;Mara, AB;Goodridge, ML;Ozyck, RG;Reinhardt, E;Miller, JM;Hunte, M;Tulman, ER;Frasca, S;Silbart, LK;Geary, SJ;Szczepanek, SM;
PMID: 36310317 | DOI: 10.1038/s41541-022-00556-z

Development of an effective vaccine for Mycoplasma pneumoniae has been hindered by reports of Vaccine Enhanced Disease (VED) in test subjects vaccinated and challenged in studies conducted in the 1960s. The exact mechanism of disease exacerbation has yet to be fully described, but host immune responses to Lipid-Associated Membrane Proteins (LAMPs) lipoprotein lipid moieties have been implicated. LAMPs-induced exacerbation appears to involve helper T cell recall responses, due in part to their influence on neutrophil recruitment and subsequent inflammatory responses in the lung. Herein, we characterized the functions of host B cell responses to M. pneumoniae LAMPs and delipidated-LAMPs (dLAMPs) by conducting passive transfer and B cell depletion studies to assess their contribution to disease exacerbation or protection using a BALB/c mouse model. We found that antibody responses to M. pneumoniae LAMPs and dLAMPs differ in magnitude, but not in isotype or subclass. Passive transfer, dLAMP denaturation, and monoclonal antibody studies indicate that antibodies do not cause VED, but do appear to contribute to control of bacterial loads in the lungs. Depletion of B cells prior to LAMPs-vaccination results in significantly enhanced pathology in comparison to B cell competent controls, suggesting a possible regulatory role of B cells distinct from antibody secretion. Taken together, our findings suggest that B cell antibody responses to M. pneumoniae contribute to, but are insufficient for protection against challenge on their own, and that other functional properties of B cells are necessary to limit exacerbation of disease in LAMPs-vaccinated mice after infection.
Gut dysbiosis is associated with acceleration of lupus nephritis

Scientific reports

2022 Jan 07

Valiente, GR;Munir, A;Hart, ML;Blough, P;Wada, TT;Dalan, EE;Willis, WL;Wu, LC;Freud, AG;Jarjour, WN;
PMID: 34996983 | DOI: 10.1038/s41598-021-03886-5

The gut microbiota (GM) exerts a strong influence over the host immune system and dysbiosis of this microbial community can affect the clinical phenotype in chronic inflammatory conditions. To explore the role of the GM in lupus nephritis, we colonized NZM2410 mice with Segmented Filamentous Bacteria (SFB). Gut colonization with SFB was associated with worsening glomerulonephritis, glomerular and tubular immune complex deposition and interstitial inflammation compared to NZM2410 mice free of SFB. With SFB colonization mice experienced an increase in small intestinal lamina propria Th17 cells and group 3 innate lymphoid cells (ILC3s). However, although serum IL-17A expression was elevated in these mice, Th17 cells and ILC3s were not detected in the inflammatory infiltrate in the kidney. In contrast, serum and kidney tissue expression of the macrophage chemoattractants MCP-1 and CXCL1 were significantly elevated in SFB colonized mice. Furthermore, kidney infiltrating F4/80+CD206+M2-like macrophages were significantly increased in these mice. Evidence of increased gut permeability or "leakiness" was also detected in SFB colonized mice. Finally, the intestinal microbiome of SFB colonized mice at 15 and 30 weeks of age exhibited dysbiosis when compared to uncolonized mice at the same time points. Both microbial relative abundance as well as biodiversity of colonized mice was found to be altered. Collectively, SFB gut colonization in the NZM2410 mouse exacerbates kidney disease, promotes kidney M2-like macrophage infiltration and overall intestinal microbiota dysbiosis.
Restoring auditory cortex plasticity in adult mice by restricting thalamic adenosine signaling.

Science.

2017 Jun 30

Blundon JA, Roy NC, Teubner BJW, Yu J, Eom TY, Sample KJ, Pani A, Smeyne RJ, Han SB, Kerekes RA, Rose DC, Hackett TA, Vuppala PK, Freeman BB 3rd, Zakharenko SS.
PMID: 28663494 | DOI: 10.1126/science.aaf4612

Circuits in the auditory cortex are highly susceptible to acoustic influences during an early postnatal critical period. The auditory cortex selectively expands neural representations of enriched acoustic stimuli, a process important for human language acquisition. Adults lack this plasticity. Here we show in the murine auditory cortex that juvenile plasticity can be reestablished in adulthood if acoustic stimuli are paired with disruption of ecto-5'-nucleotidase-dependent adenosine production or A1-adenosine receptor signaling in the auditory thalamus. This plasticity occurs at the level of cortical maps and individual neurons in the auditory cortex of awake adult mice and is associated with long-term improvement of tone-discrimination abilities. We conclude that, in adult mice, disrupting adenosine signaling in the thalamus rejuvenates plasticity in the auditory cortex and improves auditory perception.

Increased HIV-1 transcriptional activity and infectious burden in peripheral blood and gut-associated CD4+ T cells expressing CD30

PLoS Pathog.

2018 Feb 22

Hogan LE, Vasquez J, Hobbs KS, Hanhauser E, Aguilar-Rodriguez B, Hussien R, Thanh C, Gibson EA, Carvidi AB, Smith LCB, Khan S, Trapecar M, Sanjabi S, Somsouk M, Stoddart CA, Kuritzkes DR, Deeks SG, Henrich TJ.
PMID: 29470552 | DOI: 10.1371/journal.ppat.1006856

HIV-1-infected cells persist indefinitely despite the use of combination antiretroviral therapy (ART), and novel therapeutic strategies to target and purge residual infected cells in individuals on ART are urgently needed. Here, we demonstrate that CD4+ T cell-associated HIV-1 RNA is often highly enriched in cells expressing CD30, and that cells expressing this marker considerably contribute to the total pool of transcriptionally active CD4+ lymphocytes in individuals on suppressive ART. Using in situ RNA hybridization studies, we show co-localization of CD30 with HIV-1 transcriptional activity in gut-associated lymphoid tissues. We also demonstrate that ex vivo treatment with brentuximab vedotin, an antibody-drug conjugate (ADC) that targets CD30, significantly reduces the total amount of HIV-1 DNA in peripheral blood mononuclear cells obtained from infected, ART-suppressed individuals. Finally, we observed that an HIV-1-infected individual, who received repeated brentuximab vedotin infusions for lymphoma, had no detectable virus in peripheral blood mononuclear cells. Overall, CD30 may be a marker of residual, transcriptionally active HIV-1 infected cells in the setting of suppressive ART. Given that CD30 is only expressed on a small number of total mononuclear cells, it is a potential therapeutic target of persistent HIV-1 infection.

Expression of Bitter Taste Receptors in the Intestinal Cells of Non-Human Primates

Int J Mol Sci

2020 Jan 30

Imai H, Hakukawa M, Hayashi M, Iwatsuki K, Masuda K
PMID: 32019181 | DOI: 10.3390/ijms21030902

(1) Background: Recent studies have investigated the expression of taste-related genes in the organs of various animals, including humans; however, data for additional taxa are needed to facilitate comparative analyses within and among species. (2) Methods: We investigated the expression of taste-related genes in the intestines of rhesus macaques, the non-human primates most commonly used in experimental models. (3) Results: Based on RNAseq and qRT-PCR, genes encoding bitter taste receptors and the G-protein gustducin were expressed in the gut of rhesus macaques. RNAscope analysis showed that one of the bitter receptors, TAS2R38, was expressed in some cells in the small intestine, and immunohistochemical analysis revealed the presence of T2R38-positive cells in the villi of the intestines. (4) Conclusions: These results suggest that bitter receptors are expressed in the gut of rhesus macaques, supporting the use of macaques as a model for studies of human taste, including gut analyses
Cancer associated fibroblast FAK regulates malignant cell metabolism.

Nat Commun

2020 Mar 10

Demircioglu F, Wang J, Candido J, Costa ASH, Casado P, de Luxan Delgado B, Reynolds LE, Gomez-Escudero J, Newport E, Rajeeve V, Baker AM, Roy-Luzarraga M, Graham TA, Foster J, Wang Y, Campbell JJ, Singh R, Zhang P, Schall TJ, Balkwill FR, Sosabowski J, Cutillas PR, Frezza C, Sancho P, Hodivala-Dilke K
PMID: 32157087 | DOI: 10.1038/s41467-020-15104-3

Emerging evidence suggests that cancer cell metabolism can be regulated by cancer-associated fibroblasts (CAFs), but the mechanisms are poorly defined. Here we show that CAFs regulate malignant cell metabolism through pathways under the control of FAK. In breast and pancreatic cancer patients we find that low FAK expression, specifically in the stromal compartment, predicts reduced overall survival. In mice, depletion of FAK in a subpopulation of CAFs regulates paracrine signals that increase malignant cell glycolysis and tumour growth. Proteomic and phosphoproteomic analysis in our mouse model identifies metabolic alterations which are reflected at the transcriptomic level in patients with low stromal FAK. Mechanistically we demonstrate that FAK-depletion in CAFs increases chemokine production, which via CCR1/CCR2 on cancer cells, activate protein kinase A, leading to enhanced malignant cell glycolysis. Our data uncover mechanisms whereby stromal fibroblasts regulate cancer cell metabolism independent of genetic mutations in cancer cells
Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy

Nature

2022 Jun 22

Chaffin, M;Papangeli, I;Simonson, B;Akkad, AD;Hill, MC;Arduini, A;Fleming, SJ;Melanson, M;Hayat, S;Kost-Alimova, M;Atwa, O;Ye, J;Bedi, KC;Nahrendorf, M;Kaushik, VK;Stegmann, CM;Margulies, KB;Tucker, NR;Ellinor, PT;
PMID: 35732739 | DOI: 10.1038/s41586-022-04817-8

Heart failure encompasses a heterogeneous set of clinical features that converge on impaired cardiac contractile function1,2 and presents a growing public health concern. Previous work has highlighted changes in both transcription and protein expression in failing hearts3,4, but may overlook molecular changes in less prevalent cell types. Here we identify extensive molecular alterations in failing hearts at single-cell resolution by performing single-nucleus RNA sequencing of nearly 600,000 nuclei in left ventricle samples from 11 hearts with dilated cardiomyopathy and 15 hearts with hypertrophic cardiomyopathy as well as 16 non-failing hearts. The transcriptional profiles of dilated or hypertrophic cardiomyopathy hearts broadly converged at the tissue and cell-type level. Further, a subset of hearts from patients with cardiomyopathy harbour a unique population of activated fibroblasts that is almost entirely absent from non-failing samples. We performed a CRISPR-knockout screen in primary human cardiac fibroblasts to evaluate this fibrotic cell state transition; knockout of genes associated with fibroblast transition resulted in a reduction of myofibroblast cell-state transition upon TGFβ1 stimulation for a subset of genes. Our results provide insights into the transcriptional diversity of the human heart in health and disease as well as new potential therapeutic targets and biomarkers for heart failure.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?