ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Human pathology, 44(4):487–94.
Kim MA, Jung JE, Lee HE, Yang HK, Kim WH (2013)
PMID: 23084583 | DOI: 10.1016/j.humpath.2012.06.022.
PLoS One. 2014 May 30;9(5):e98528.
Seo AN, Kwak Y, Kim DW, Kang SB, Choe G, Kim WH, Lee HS.
PMID: 24879338 | DOI: 10.1371/journal.pone.0098528
Chinese Journal of Pathology
2015 Nov 30
Shafei W, Yuanyuan L, Ying J, Yufeng L, Quancai C, Zhiyong L, Xuan Z.
PMID: - | DOI: -
Objective:
To investigate in situ mRNA expression of HER 2 oncogene in breast cancers with equivocal immunohistochemical results , and to explore the potential feasibility of RNAscope technique in evaluating HER2 status in breast cancers .Methods Sixty-nine FFPE samples of invasive ductal breast cancer with equivocal HER 2 immunohistochemistry results ( IHC 2+) were collected from surgical excisions from Peking Union Medical College Hospital between June 2010 and June 2013.HER2 status and in situ mRNA expression were tested by fluorescence in situ hybridization ( FISH) and RNAscope respectively using tissue microarray constructed from tumor paraffin blocks .The results of HER2 mRNA expression were scored 0 to 4 ( from low to high levels ) according to mRNA expression in 100 cancer cells .HER2 mRNA expression was evaluated in two groups of patients , with positive and negative FISH results .Results Twenty-three of the 69 samples were FISH positive, including 16 samples that were scored 4 by RNAscope (70%,16/23), 6 samples were scored 3 ( 26%,6/23 ) and one sample was scored 2 ( 4%,1/23 ) .High in situ mRNA expression (score 4 or 3) were observed in 96%of HER2 FISH positive samples.All of samples that were scored 4 by RNAscope were FISH positive .Forty-six samples were FISH negative , including 17 samples that were scored 3 by RNAscope (37%,17/46), 25 samples were scored 2 (54%,25/46), and 4 samples were scored 1 (9%,4/46).Conclusions Breast cancer with HER2 IHC 2 +could be further classified according to in situ mRNA expression status .Among them, RNAscope score of 4 could be one of the interpretation criteria for re-testing IHC 2+samples.In situ detection of HER2 mRNA may be an additional candidate method of confirmation for HER 2 gene amplification or protein overexpression , and has potential clinical utility.
PLoS One
2017 Jan 27
Pillai SG, Zhu P, Siddappa CM, Adams DL, Li S, Makarova OV, Amstutz P, Nunley R, Tang CM, Watson MA, Aft RL.
PMID: 28129357 | DOI: 10.1371/journal.pone.0170761
J Virol. 2015 Mar 25.
Haagmans BL, van den Brand JM, Provacia LB, Raj VS, Stittelaar KJ, Getu S, de Waal L, Bestebroer TM, van Amerongen G, Verjans GM, Fouchier RA, Smits SL, Thijs K, Osterhaus AD.
Science
2015 Dec 18
Haagmans BL, van den Brand JMA, Stalin Raj V, Volz A, Wohlsein P, Smits SL, Schipper D, Bestebroer TM, Okba N, Fux R, Bensaid A, Solanes Foz D, Kuiken T, Baumgärtner W, Segalés J, Sutter G, Osterhaus ADME.
PMID: - | DOI: 10.1126/science.aad1283
Middle East respiratory syndrome coronavirus (MERS-CoV) infections cause an ongoing outbreak in humans fueled by multiple zoonotic MERS-CoV introductions from dromedary camels. Besides implementing hygiene measures to limit further camel-to-human and human-to-human transmissions, vaccine-mediated reduction of MERS-CoV spread from the animal reservoir may be envisaged. Here, we show that a modified vaccinia virus Ankara (MVA) virus vaccine expressing the MERS-CoV spike protein confers mucosal immunity in dromedary camels. Significant reduction of excreted infectious virus and viral RNA transcripts was observed in vaccinated animals upon MERS-CoV challenge as compared to controls. Protection correlated with the presence of serum neutralizing antibodies to MERS-CoV. Induction of MVA-specific antibodies that cross-neutralize camelpox virus, would also provide protection against camelpox.
New Biotechnology, 29(6), 665–681.
Portier BP, Gruver AM, Huba MA, Minca EC, Cheah AL, Wang Z, Tubbs RR (2012).
PMID: 22504737 | DOI: 10.1016/j.nbt.2012.03.011.
Journal of Korean Medical Science
2016 Mar 10
Cha RH, Yang SH, Moon KC, Joh JS, Lee JY, Shin HS, Kim DK, Kim YS.
PMID: - | DOI: 10.3346/jkms.2016.31.4.635
A 68-year old man diagnosed with Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) presented with multiple pneumonic infiltrations on his chest X-ray, and the patient was placed on a mechanical ventilator because of progressive respiratory failure. Urinary protein excretion steadily increased for a microalbumin to creatinine ratio of 538.4 mg/g Cr and a protein to creatinine ratio of 3,025.8 mg/g Cr. The isotope dilution mass spectrometry traceable serum creatinine level increased to 3.0 mg/dL. We performed a kidney biopsy 8 weeks after the onset of symptoms. Acute tubular necrosis was the main finding, and proteinaceous cast formation and acute tubulointerstitial nephritis were found. There were no electron dense deposits observed with electron microscopy. We could not verify the virus itself by in situ hybridization and confocal microscopy (MERS-CoV co-stained with dipeptidyl peptidase 4). The viremic status, urinary virus excretion, and timely kidney biopsy results should be investigated with thorough precautions to reveal the direct effects of MERS-CoV with respect to renal complications.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com