Neuroscience and biobehavioral reviews
Zhang, L;Lucassen, PJ;Salta, E;Verhaert, PDEM;Swaab, DF;
PMID: 34906612 | DOI: 10.1016/j.neubiorev.2021.12.023
Suicide is a major global hazard. There is a need for increasing suicide awareness and effective and evidence-based interventions, targeting both suicidal ideation and conduct. However, anti-suicide pharmacological effects are unsatisfactory. The human hippocampus is vulnerable to neuropsychiatric damages and subsequently releases psychobiological signals. Human hippocampal studies of suicide completers have shown mechanistic changes in neurobiology, which, however, could not reflect the neuropathological 'fingerprints' of fatal suicide ideations and suicide attempts. In this review, we provide several leading theories of suicide, including the serotoninergic system, Wnt pathway and brain-derived neurotrophic factor/tropomyosin receptor kinase B signalling, and discuss the evidence for their roles in suicide and treatment. Moreover, the cognitive dysfunctions associated with suicide risk are discussed, as well as the novel evidence on cognitive therapies that decrease suicidal ideation. We highlight the need to apply multi-omics techniques (including single-nucleus RNA sequencing and mass spectrometry histochemistry) on hippocampal samples from donors who died by suicide or legal euthanasia, to clarify the aetiology of suicide and propose novel therapeutic strategies.
Genome-wide analysis of pseudogenes reveals HBBP1\'s human-specific essentiality in erythropoiesis and implication in β-thalassemia
Ma, Y;Liu, S;Gao, J;Chen, C;Zhang, X;Yuan, H;Chen, Z;Yin, X;Sun, C;Mao, Y;Zhou, F;Shao, Y;Liu, Q;Xu, J;Cheng, L;Yu, D;Li, P;Yi, P;He, J;Geng, G;Guo, Q;Si, Y;Zhao, H;Li, H;Banes, GL;Liu, H;Nakamura, Y;Kurita, R;Huang, Y;Wang, X;Wang, F;Fang, G;Engel, JD;Shi, L;Zhang, YE;Yu, J;
PMID: 33476555 | DOI: 10.1016/j.devcel.2020.12.019
The human genome harbors 14,000 duplicated or retroposed pseudogenes. Given their functionality as regulatory RNAs and low conservation, we hypothesized that pseudogenes could shape human-specific phenotypes. To test this, we performed co-expression analyses and found that pseudogene exhibited tissue-specific expression, especially in the bone marrow. By incorporating genetic data, we identified a bone-marrow-specific duplicated pseudogene, HBBP1 (η-globin), which has been implicated in β-thalassemia. Extensive functional assays demonstrated that HBBP1 is essential for erythropoiesis by binding the RNA-binding protein (RBP), HNRNPA1, to upregulate TAL1, a key regulator of erythropoiesis. The HBBP1/TAL1 interaction contributes to a milder symptom in β-thalassemia patients. Comparative studies further indicated that the HBBP1/TAL1 interaction is human-specific. Genome-wide analyses showed that duplicated pseudogenes are often bound by RBPs and less commonly bound by microRNAs compared with retropseudogenes. Taken together, we not only demonstrate that pseudogenes can drive human evolution but also provide insights on their functional landscapes.
Virchows Archiv : an international journal of pathology
Einhaus, J;Rochwarger, A;Mattern, S;Gaudillière, B;Schürch, CM;
PMID: 36757500 | DOI: 10.1007/s00428-023-03509-6
High-multiplex tissue imaging (HMTI) approaches comprise several novel immunohistological methods that enable in-depth, spatial single-cell analysis. Over recent years, studies in tumor biology, infectious diseases, and autoimmune conditions have demonstrated the information gain accessible when mapping complex tissues with HMTI. Tumor biology has been a focus of innovative multiparametric approaches, as the tumor microenvironment (TME) contains great informative value for accurate diagnosis and targeted therapeutic approaches: unraveling the cellular composition and structural organization of the TME using sophisticated computational tools for spatial analysis has produced histopathologic biomarkers for outcomes in breast cancer, predictors of positive immunotherapy response in melanoma, and histological subgroups of colorectal carcinoma. Integration of HMTI technologies into existing clinical workflows such as molecular tumor boards will contribute to improve patient outcomes through personalized treatments tailored to the specific heterogeneous pathological fingerprint of cancer, autoimmunity, or infection. Here, we review the advantages and limitations of existing HMTI technologies and outline how spatial single-cell data can improve our understanding of pathological disease mechanisms and determinants of treatment success. We provide an overview of the analytic processing and interpretation and discuss how HMTI can improve future routine clinical diagnostic and therapeutic processes.
George, AF;Roan, NR;
PMID: 36689119 | DOI: 10.1007/s11904-023-00649-x
This review describes how advances in CyTOF and high-dimensional analysis methods have furthered our understanding of HIV transmission, pathogenesis, persistence, and immunity.CyTOF has generated important insight on several aspects of HIV biology: (1) the differences between cells permissive to productive vs. latent HIV infection, and the HIV-induced remodeling of infected cells; (2) factors that contribute to the persistence of the long-term HIV reservoir, in both blood and tissues; and (3) the impact of HIV on the immune system, in the context of both uncontrolled and controlled infection. CyTOF and high-dimensional analysis tools have enabled in-depth assessment of specific host antigens remodeled by HIV, and have revealed insights into the features of HIV-infected cells enabling them to survive and persist, and of the immune cells that can respond to and potentially control HIV replication. CyTOF and other related high-dimensional phenotyping approaches remain powerful tools for translational research, and applied HIV to cohort studies can inform on mechanisms of HIV pathogenesis and persistence, and potentially identify biomarkers for viral eradication or control.
Till, A;Fries, C;Fenske, WK;
PMID: 36552107 | DOI: 10.3390/brainsci12121646
The body of mammals harbors two distinct types of adipose tissue: while cells within the white adipose tissue (WAT) store surplus energy as lipids, brown adipose tissue (BAT) is nowadays recognized as the main tissue for transforming chemical energy into heat. This process, referred to as 'non-shivering thermogenesis', is facilitated by the uncoupling of the electron transport across mitochondrial membranes from ATP production. BAT-dependent thermogenesis acts as a safeguarding mechanism under reduced ambient temperature but also plays a critical role in metabolic and energy homeostasis in health and disease. In this review, we summarize the evolutionary structure, function and regulation of the BAT organ under neuronal and hormonal control and discuss its mutual interaction with the central nervous system. We conclude by conceptualizing how better understanding the multifaceted communicative links between the brain and BAT opens avenues for novel therapeutic approaches to treat obesity and related metabolic disorders.
Pediatric and developmental pathology : the official journal of the Society for Pediatric Pathology and the Paediatric Pathology Society
Terry, J;
PMID: 36571293 | DOI: 10.1177/10935266221144083
The pathogenesis of chronic intervillositis of unknown etiology (CIUE) may involve IFNγ overexpression. This study assesses the extent of IFNγ expression in CIUE by immunohistochemistry and compares it to spontaneous pregnancy losses. C4d deposition is also assessed to see whether IFNγ and C4d might represent separate diagnostic categories. Placenta from first to early second trimester with high grade CIUE (CHG; 17 cases) and low grade CIUE (CLG; 12 cases) is compared to euploid (SPLN; 18 cases), aneuploid spontaneous pregnancy losses (SPLA, 17 cases), normal placenta (NP, 13 cases). Protein level expression of IFNγ and C4d is assessed on whole tissue sections by immunohistochemistry. 35% of CHG and 42% of CLG show some level of IFNγ expression localized to the luminal surface of syncytiotrophoblast. 12% of SPLA and no SPLN or NP cases are IFNγ positive. C4d deposition is seen in 100% of CIUE, 88% of SPLA, 83% of SPLN, and 46% of NP samples. IFNγ overexpression occurs in approximately 40% of CIUE-related pregnancy losses. IFNγ expression restricted to a subgroup of CIUE implies that IFNγ may define a distinct disease process. The non-discriminatory pattern of C4d deposition suggests it is a non-specific phenomenon possibly related to placental damage.
International journal of molecular sciences
Oku, Y;Madia, F;Lau, P;Paparella, M;McGovern, T;Luijten, M;Jacobs, MN;
PMID: 36361516 | DOI: 10.3390/ijms232112718
With recent rapid advancement of methodological tools, mechanistic understanding of biological processes leading to carcinogenesis is expanding. New approach methodologies such as transcriptomics can inform on non-genotoxic mechanisms of chemical carcinogens and can be developed for regulatory applications. The Organisation for the Economic Cooperation and Development (OECD) expert group developing an Integrated Approach to the Testing and Assessment (IATA) of Non-Genotoxic Carcinogens (NGTxC) is reviewing the possible assays to be integrated therein. In this context, we review the application of transcriptomics approaches suitable for pre-screening gene expression changes associated with phenotypic alterations that underlie the carcinogenic processes for subsequent prioritisation of downstream test methods appropriate to specific key events of non-genotoxic carcinogenesis. Using case studies, we evaluate the potential of gene expression analyses especially in relation to breast cancer, to identify the most relevant approaches that could be utilised as (pre-) screening tools, for example Gene Set Enrichment Analysis (GSEA). We also consider how to address the challenges to integrate gene panels and transcriptomic assays into the IATA, highlighting the pivotal omics markers identified for assay measurement in the IATA key events of inflammation, immune response, mitogenic signalling and cell injury.
Labbaf, Z;Petratou, K;Ermlich, L;Backer, W;Tarbashevich, K;Reichman-Fried, M;Luschnig, S;Schulte-Merker, S;Raz, E;
PMID: 35914525 | DOI: 10.1016/j.devcel.2022.07.008
Cell ablation is a key method in the research fields of developmental biology, tissue regeneration, and tissue homeostasis. Eliminating specific cell populations allows for characterizing interactions that control cell differentiation, death, behavior, and spatial organization of cells. Current methodologies for inducing cell death suffer from relatively slow kinetics, making them unsuitable for analyzing rapid events and following primary and immediate consequences of the ablation. To address this, we developed a cell-ablation system that is based on bacterial toxin/anti-toxin proteins and enables rapid and cell-autonomous elimination of specific cell types and organs in zebrafish embryos. A unique feature of this system is that it uses an anti-toxin, which allows for controlling the degree and timing of ablation and the resulting phenotypes. The transgenic zebrafish generated in this work represent a highly efficient tool for cell ablation, and this approach is applicable to other model organisms as demonstrated here for Drosophila.
Journal of controlled release : official journal of the Controlled Release Society
Xue, B;Ge, M;Fan, K;Huang, X;Yan, X;Jiang, W;Jiang, B;Yang, Z;
PMID: 35987352 | DOI: 10.1016/j.jconrel.2022.08.026
Retinal neovascularization is typically accompanied by hypoxia-induced oxidative injury in the vascular system. This study developed an ultrasmall (6-8 nm) platinum (Pt) nanozyme loaded mitochondria-targeted liposome (Pt@MitoLipo) to alleviate hypoxia and eliminate excess reactive oxygen species (ROS) for effective retinal neovascularization disease therapy. Pt nanozymes possess superoxide dismutase (SOD) and catalase (CAT) cascade enzyme-like activities, which convert cytotoxic O2•- and H2O2 into nontoxic H2O and O2. Triphenylphosphonium (TPP)-conjugated liposomes were coated on the surface of Pt nanozymes to increase their biocompatibility and help them penetrate the cell membrane, escape from the lysosomal barrier, and target mitochondria, thus achieving precise scavenging of mitochondrial O2•- and relief from hypoxia. Using an oxygen-induced retinopathy (OIR) mouse model, we demonstrated that Pt@MitoLipo nanozymes significantly suppressed hypoxia-induced abnormal neovascularization and facilitated avascular normalization of the retina in vivo without any noticeable toxicity. This study provides a promising way to break through cellular barriers and target scavenging mitochondrial O2•- and illustrates the potential of ROS-scavenging and hypoxia relief in retinal neovascularization disease therapy.
Development (Cambridge, England)
Price, JD;Lindtner, S;Ypsilanti, A;Binyameen, F;Johnson, JR;Newton, BW;Krogan, NJ;Rubenstein, JLR;
PMID: 35695185 | DOI: 10.1242/dev.199508
In the developing subpallium, the fate decision between neurons and glia is driven by expression of Dlx1/2 or Olig1/2, respectively, two sets of transcription factors with a mutually repressive relationship. The mechanism by which Dlx1/2 repress progenitor and oligodendrocyte fate, while promoting transcription of genes needed for differentiation, is not fully understood. We identified a motif within DLX1 that binds RBBP4, a NuRD complex subunit. ChIP-seq studies of genomic occupancy of DLX1 and six different members of the NuRD complex show that DLX1 and NuRD colocalize to putative regulatory elements enriched near other transcription factor genes. Loss of Dlx1/2 leads to dysregulation of genome accessibility at putative regulatory elements near genes repressed by Dlx1/2, including Olig2. Consequently, heterozygosity of Dlx1/2 and Rbbp4 leads to an increase in the production of OLIG2+ cells. These findings highlight the importance of the interplay between transcription factors and chromatin remodelers in regulating cell-fate decisions.
Lloyd-Lewis, B;Gobbo, F;Perkins, M;Jacquemin, G;Huyghe, M;Faraldo, MM;Fre, S;
PMID: 35263603 | DOI: 10.1016/j.celrep.2022.110461
Real-time in vivo imaging provides an essential window into the spatiotemporal cellular events contributing to tissue development and pathology. By coupling longitudinal intravital imaging with genetic lineage tracing, here we capture the earliest cellular events arising in response to active Wnt/β-catenin signaling and the ensuing impact on the organization and differentiation of the mammary epithelium. This enables us to interrogate how Wnt/β-catenin regulates the dynamics of distinct subpopulations of mammary epithelial cells in vivo and in real time. We show that β-catenin stabilization, when targeted to either the mammary luminal or basal epithelial lineage, leads to cellular rearrangements that precipitate the formation of hyperplastic lesions that undergo squamous transdifferentiation. These results enhance our understanding of the earliest stages of hyperplastic lesion formation in vivo and reveal that, in mammary neoplastic development, β-catenin activation dictates a hair follicle/epidermal differentiation program independently of the targeted cell of origin.
Advanced Functional Materials
Shen, H;Fan, C;You, Z;Xiao, Z;Zhao, Y;Dai, J;
| DOI: 10.1002/adfm.202110628
Spinal cord injury (SCI) often leads to the loss of motor and sensory functions and is a major challenge in neurological clinical practice. Understanding the pathophysiological changes and the inhibitory microenvironment is crucial to enable the identification of potential mechanisms for functional restoration and to provide guidance for the development of efficient treatment and repair strategies. To date, the implantation of specifically functionalized biomaterials in the lesion area has been shown to help promote axon regeneration and facilitate neuronal circuit generation by remolding SCI microenvironments. Moreover, structural and functional restoration of the spinal cord through the transplantation of naive spinal cord tissue grafts from adult donors, artificial spinal cord-like tissue developed from tissue engineering, and 3D printing will open up new avenues for SCI treatment. This review focuses on the dynamic pathophysiological changes in SCI microenvironments, biomaterials for SCI repairs, strategies for restoring spinal cord structure and function, experimental animal models, regenerative mechanisms, and clinical studies for SCI repair. The current status, recent advances, challenges, and prospects of scaffold-based SCI repair from basic to clinical settings are summarized and discussed, to provide a reference that will help to guide the future exploration and development of spinal cord regeneration strategies.