Fox, M;Wulff, A;Franco, D;Choi, E;Calarco, C;Engeln, M;Turner, M;Chandra, R;Rhodes, V;Thompson, S;Ament, S;Lobo, M;
| DOI: 10.1016/j.biopsych.2022.08.023
Background Opioid discontinuation generates a withdrawal syndrome marked by increased negative affect. Increased symptoms of anxiety and dysphoria during opioid discontinuation are a significant barrier to achieving long-term abstinence in opioid-dependent individuals. While adaptations in the nucleus accumbens are implicated in the opioid abstinence syndrome, the precise neural mechanisms are poorly understood. Additionally, our current knowledge is limited to changes following natural and semi-synthetic opioids, despite recent increases in synthetic opioid use and overdose. Methods We used a combination of cell subtype specific viral-labeling and electrophysiology in male and female mice to investigate structural and functional plasticity in nucleus accumbens medium spiny neuron (MSNs) subtypes after fentanyl abstinence. We characterized molecular adaptations after fentanyl abstinence with subtype specific RNAseq and Weighted Gene Co-expression Network Analysis. We used viral-mediated gene transfer to manipulate the molecular signature of fentanyl abstinence in D1-MSNs. Results Here we show fentanyl abstinence increases anxiety-like behavior, decreases social interaction, and engenders MSN subtype-specific plasticity in both sexes. D1, but not D2-MSNs exhibit dendritic atrophy and an increase in excitatory drive. We identified a cluster of co-expressed dendritic morphology genes downregulated selectively in D1-MSNs that are transcriptionally co-regulated by E2F1. E2f1 expression in D1-MSNs protects against loss of dendritic complexity, altered physiology, and negative affect-like behaviors caused by fentanyl abstinence. Conclusion Our findings indicate fentanyl abstinence causes unique structural, functional, and molecular changes in nucleus accumbens D1-MSNs that can be targeted to alleviate negative affective symptoms during abstinence.
Behavioural Brain Research
Blount, H;Dee, J;Wu, L;Schwendt, M;Knackstedt, L;
| DOI: 10.1016/j.bbr.2022.114090
Despite the higher prevalence of post-traumatic stress disorder (PTSD) in women, the majority of preclinical research has been conducted utilizing male subjects. We have found that male rats exposed to the predator scent 2,4,5-trimethyl-3-thiazoline (TMT) show heterogenous long-term anxiety-like behavior and conditioned fear to the TMT environment. Stress-Resilient males exhibit increased mGlu5 mRNA expression in the basolateral amygdala (BLA) and prefrontal cortex (PFC). Here we sought to determine whether the same behavioral and genetic responses would be observed in female rats exposed to TMT. Female Sprague-Dawley rats were exposed to TMT for ten minutes, while Controls were exposed to an unscented environment. Anxiety and anhedonia were assessed 7-14 days later with elevated plus maze (EPM), acoustic startle response, light-dark box, and sucrose preference test (SPT). TMT-exposed females spent less time in the EPM open arms, exhibited greater startle amplitude, and reduced sucrose intake compared to Controls. Median split analyses conducted on EPM and SPT data yielded stress-Susceptible and -Resilient phenotypes that displayed behavior in the light-dark box consistent with EPM and SPT behavior. Susceptible females displayed greater BLA mGlu5 mRNA expression than Resilient and Control rats and did not show conditioned fear, in contrast to previous results in males. Resilient females displayed greater mGlu5 mRNA expression in the nucleus accumbens. These data indicate that the predator scent stress model of PTSD produces distinct stress-Susceptible and Resilient phenotypes in female rats that are associated with changes in mGlu5 mRNA expression in several brain regions.
Khatamsaz, E;Stoller, F;Zach, S;Kätzel, D;Hengerer, B;
| DOI: 10.1016/j.nsa.2022.100659
Background: The Psychiatric Ratings using Intermediate Stratified Markers (PRISM) project focuses on understanding the biological background behind social deficits, specifically social withdrawal irrespective of diagnosis. Reduced connectional integrity in fiber tracts such as Forceps minor has been indicated in low social individuals as a part of the PRISM 1 project. These fiber tracts are also involved in the Default Mode Network (DMN) and the Social network and they share a common region, the Orbitofrontal Cortex (OFC).This study aims to back-translate the clinical data to preclinical studies and associate social dysfunction in rodents with DMN and particularly OFC. Parvalbumin interneurons are targeted based on their fundamental role in maintaining Excitatory Inhibitory (E/I) balance in brain circuits. Numerous studies indicate behavioral impairment in rodents by increasing excitability of PV+ interneurons. Methods: As an initial step, we characterized the population of projection neurons within OFCs by combining Cholera Toxin subunit B (CTB) as a retrograde tracer and In situ hybridization (ISH) technique (RNAscope). We identified the expression of mRNAs marking glutamatergic (vesicular glutamate transporter [VGLUT]) and GABAergic (vesicular GABA transporter [VGAT]) by using Slc17a7 and Slc32a1 probes. CTB was injected unilaterally in the left OFC (AP=2.68, ML=-0.8, DV=2.2). after 10 days mice were perfused and RNAscope assay was performed using RNAscope™ Multiplex Fluorescent kit (ACDBio™).For inducing hypoactivation of OFC, we introduced an excitatory DREADD (designer receptors exclusively activated by designer drugs) to PV+ interneurons by using a PV-Cre mouse line. Mice were injected either AAV-hSyn-DIO-hM3D(Gq)-mCherry virus (n=12) or AAV-hSyn-DIO-mCherry (n=12) as control virus. As a novel behavioral tool, Radiofrequency identification (RFID)-assisted SocialScan combined with video tracking has been used, which provides a long-term observation of social behaviors. Monitoring the behavior in groups of four was performed for 7 days in total. After two pre-application days, Clozapine-N-oxide (CNO) was injected three times on consecutive days intraperitoneally (5mg/kg) as an activator of hM3D. application days were followed by two post-application days. Mice were perfused and RNAscope was performed to visualize c-fos mRNA expression as neuronal activity marker, and PV expression to validate our virus and mouse line efficacy. Results: ISH results indicated VGLUT1 has the highest expression within projection neurons (81%). 6% are VGAT+ and only 3% are both VGLUT1/VGAT positive neurons. Despite demonstrating the GABAergic projection neurons as a minority, their crucial role as local interneurons to moderate the excitatory neurons is indisputable.In in vivo study, CNO administration induced social dysregulation in DREAAD mice, demonstrated by a reduction in different social parameters (approach, fight, etc.) in terms of duration. During post-application days, DREAAD mice showed significantly higher social interaction in all definedparameters (Social Approach: p=0.0009, unpaired T-test) and locomotion as a non-social parameter (p= 0.0207).Results from ISH support our hypothesis that DREADD activation of PV+ interneurons is followed by high expression of neuronal activity markers in these targeted interneurons. Conclusion: This study indicates that manipulation of PV+ interneurons using artificially engineered activating protein receptors, generates in effect activation of these interneurons, and this manipulation particularly in OFC could cause social dysfunction in mice.