Ricardo-Gonzalez, R;Kotas, M;O'Leary, C;Tenvooren, I;Marquez, D;Singh, K;Damsky, W;Schroeder, A;Cohen, J;Fassett, M;Lee, J;Daniel, S;Bittinger, K;Díaz, R;Fraser, J;Ansel, M;Spitzer, M;Liang, H;Locksley, R;
| DOI: 10.2139/ssrn.4013912
_Demodex_ mites are obligate commensal parasites of hair follicles (HF) in mammals. Normally asymptomatic, inflammatory outgrowth of mites can accompany malnutrition, immune dysfunction and aging, but mechanisms restricting _Demodex_ outgrowth and pathogenesis are not defined. Here, we show that control over mite HF colonization of mice requires ILC2s, IL-13, and its receptor IL-4Ra, but not IL-4 or the adaptive immune system. Epithelial HF-associated ILC2s elaborate IL-13 that attenuates HF and epithelial cell proliferation at anagen onset; in their absence, _Demodex_ colonization leads to increased epithelial proliferation and replacement of gene programs for repair by aberrant inflammatory programs leading to loss of barrier function and premature HF exhaustion over time. Humans with rhinophymatous acne rosacea, a nasal inflammatory condition associated with a high burden of _Demodex_, had increased HF inflammatory cells with decreased type 2 cytokines, consistent with the inverse relationship seen in mice. Our studies uncover a critical role for skin ILC2s and IL-13, which comprise an immune checkpoint necessary to sustain cutaneous integrity and restrict pathologic infestation by colonizing HF mites.
Expert opinion on biological therapy
Pipe, SW;Gonen-Yaacovi, G;Segurado, OG;
PMID: 34781798 | DOI: 10.1080/14712598.2022.2002842
: Hemophilia comprises a group of X-linked hemorrhagic disorders that result from a deficiency of coagulation factors. The disorder affects mainly males and leads to chronic pain, joint deformity, reduced mobility, and increased mortality. Current therapies require frequent administration of replacement clotting factors, but the emergence of alloantibodies (inhibitors) diminishes their efficacy. New therapies are being developed to produce the deficient clotting factors and prevent the emergence of inhibitors.: This article provides an update on the characteristics and disease pathophysiology of hemophilia A, as well as current treatments, with a special focus on ongoing clinical trials related to gene replacement therapies.: Gene replacement therapies provide safe, durable, and stable transgene expression while avoiding the challenges of clotting factor replacement therapies in patients with hemophilia. Improving the specificity of the viral construct and decreasing the therapeutic dose are critical toward minimizing cellular stress, induction of the unfolded protein response, and the resulting loss of protein production in liver cells. Next-generation gene therapies incorporating chimeric DNA sequences in the transgene can increase clotting factor synthesis and secretion, and advance the efficacy, safety, and durability of gene replacement therapy for hemophilia A as well as other blood clotting disorders.
Liu, S;Ye, M;Pao, GM;Song, SM;Jhang, J;Jiang, H;Kim, JH;Kang, SJ;Kim, DI;Han, S;
PMID: 34921781 | DOI: 10.1016/j.neuron.2021.11.029
Breathing can be heavily influenced by pain or internal emotional states, but the neural circuitry underlying this tight coordination is unknown. Here we report that Oprm1 (μ-opioid receptor)-expressing neurons in the lateral parabrachial nucleus (PBL) are crucial for coordinating breathing with affective pain in mice. Individual PBLOprm1 neuronal activity synchronizes with breathing rhythm and responds to noxious stimuli. Manipulating PBLOprm1 activity directly changes breathing rate, affective pain perception, and anxiety. Furthermore, PBLOprm1 neurons constitute two distinct subpopulations in a "core-shell" configuration that divergently projects to the forebrain and hindbrain. Through non-overlapping projections to the central amygdala and pre-Bötzinger complex, these two subpopulations differentially regulate breathing, affective pain, and negative emotions. Moreover, these subsets form recurrent excitatory networks through reciprocal glutamatergic projections. Together, our data define the divergent parabrachial opioidergic circuits as a common neural substrate that coordinates breathing with various sensations and behaviors such as pain and emotional processing.
Ast, J;Broichhagen, J;Hodson, DJ;
PMID: 34911028 | DOI: 10.1016/j.ebiom.2021.103739
Glucagon-like peptide-1 receptor (GLP1R) agonists target the GLP1R, whereas dual GLP1R/ gastric inhibitory polypeptide receptor (GIPR) agonists target both the GLP1R and GIPR. Despite the importance of these drug classes for the treatment of diabetes and obesity, still very little is known about the localization of GLP1R and GIPR themselves. Complicating matters is the low abundance of GLP1R and GIPR mRNA/protein, as well as a lack of specific and validated reagents for their detection. Without knowing where GLP1R and GIPR are located, it is difficult to propose mechanisms of action in the various target organs, and whether this is indirect or direct. In the current review, we will explain the steps needed to properly validate reagents for endogenous GLP1R/GIPR detection, describe the available approaches to visualize GLP1R/GIPR, and provide an update on the state-of-art. The overall aim is to provide a reference resource for researchers interested in GLP1R and GIPR signaling.
Li, D;Huang, Q;Huang, L;Wen, J;Luo, J;Li, Q;Peng, Y;Zhang, Y;
PMID: 34837950 | DOI: 10.1186/s12864-021-08146-4
As a powerful tool, RNA-Seq has been widely used in various studies. Usually, unmapped RNA-seq reads have been considered as useless and been trashed or ignored.We develop a strategy to mining the full length sequence by unmapped reads combining with specific reverse transcription primers design and high throughput sequencing. In this study, we salvage 36 unmapped reads from standard RNA-Seq data and randomly select one 149 bp read as a model. Specific reverse transcription primers are designed to amplify its both ends, followed by next generation sequencing. Then we design a statistical model based on power law distribution to estimate its integrality and significance. Further, we validate it by Sanger sequencing. The result shows that the full length is 1556 bp, with insertion mutations in microsatellite structure.We believe this method would be a useful strategy to extract the sequences information from the unmapped RNA-seq data. Further, it is an alternative way to get the full length sequence of unknown cDNA.
Liang, Q;Cheng, X;Wang, J;Owen, L;Shakoor, A;Lillvis, J;Zhang, C;Farkas, M;Kim, I;Li, Y;DeAngelis, M;Chen, R;
| DOI: 10.2139/ssrn.3991078
Cell types in the human retina are highly heterogeneous with their abundance varying by several orders of magnitude. Here, we generated a multi-omics single-cell atlas of the adult human retina, including over 250K and 150K nuclei for single-nuclei RNA- and ATAC-seq, respectively. This atlas is highly comprehensive, with over 60 distinct cell types identified, achieving a sensitivity of 0.01%. Cross species comparison of the retina atlas among human, monkey, and mice revealed increasing divergences in transcriptomic profiles and cell types toward the downstream layer of the neural circuitry. Interestingly, the overall cell heterogeneity in primate retina decreases compared to that of rodent retina. Furthermore, integrative analysis identified 70k distal cis-element-gene pairs with a large portion being cell type specific. Finally, when combined with eQTLs from bulk retina profiling, the multi-omics cell atlas enables systematic identification of candidate causal variants for a targeted gene along with cell type context information. Taken together, we present a comprehensive single-cell multi-omics atlas for the human retina that enables systematic in-depth molecular characterization of individual cell subtypes.
Journal of Investigative Dermatology
Kolitz, E;Lucas, E;Hosler, G;Kim, J;Hammer, S;Lewis, C;Xu, L;Day, A;Mauskar, M;Lea, J;Wang, R;
| DOI: 10.1016/j.jid.2021.10.009
Vulvar squamous cell carcinoma (VSCC) pathogenesis is traditionally defined by the presence or absence of human papillomavirus (HPV), but the definition of these groups and their molecular characteristics remains ambiguous across studies. Here, we present a retrospective cohort analysis of 36 patients with invasive VSCC where HPV status was determined using RNA in situ hybridization (ISH) and polymerase chain reaction (PCR). Clinical annotation, p16 immunohistochemistry (IHC), programmed death ligand-1 (PD-L1) IHC, HPV16 circular E7 RNA (circE7) detection, and RNA-sequencing (RNA-seq) of the cases was performed. A combination of ISH and PCR identified 20 cases (55.6%) as HPV-positive. HPV-status did not impact overall survival (HR: 1.36, 95% CI: 0.307 to 6.037, p=0.6857) or progression-free survival (HR: 1.12, 95% CI: 0.388 to 3.22, p=0.8367), and no significant clinical differences were found between the groups. PD-L1 expression did not correlate with HPV status, but increased expression of PD-L1 correlated with worse overall survival. Transcriptomic analyses (n=23) revealed distinct groups, defined by HPV status, with multiple differentially expressed genes previously implicated in HPV-induced cancers. HPV-positive tumors showed higher global expression of endogenous circular RNAs (circRNAs), including several circRNAs that have previously been implicated in the pathogenesis of other cancers.
Structure (London, England : 1993)
Sander, CL;Luu, J;Kim, K;Furkert, D;Jang, K;Reichenwallner, J;Kang, M;Lee, HJ;Eger, BT;Choe, HW;Fiedler, D;Ernst, OP;Kim, YJ;Palczewski, K;Kiser, PD;
PMID: 34678158 | DOI: 10.1016/j.str.2021.10.002
Visual arrestin (Arr1) terminates rhodopsin signaling by blocking its interaction with transducin. To do this, Arr1 translocates from the inner to the outer segment of photoreceptors upon light stimulation. Mounting evidence indicates that inositol phosphates (InsPs) affect Arr1 activity, but the Arr1-InsP molecular interaction remains poorly defined. We report the structure of bovine Arr1 in a ligand-free state featuring a near-complete model of the previously unresolved C-tail, which plays a crucial role in regulating Arr1 activity. InsPs bind to the N-domain basic patch thus displacing the C-tail, suggesting that they prime Arr1 for interaction with rhodopsin and help direct Arr1 translocation. These structures exhibit intact polar cores, suggesting that C-tail removal by InsP binding is insufficient to activate Arr1. These results show how Arr1 activity can be controlled by endogenous InsPs in molecular detail.
Microglia and BDNF at the crossroads of stressor related disorders: Towards a unique trophic phenotype
Neuroscience and biobehavioral reviews
Prowse, N;Hayley, S;
PMID: 34537262 | DOI: 10.1016/j.neubiorev.2021.09.018
Stressors ranging from psychogenic/social to neurogenic/injury to systemic/microbial can impact microglial inflammatory processes, but less is known regarding their effects on trophic properties of microglia. Recent studies do suggest that microglia can modulate neuronal plasticity, possibly through brain derived neurotrophic factor (BDNF). This is particularly important given the link between BDNF and neuropsychiatric and neurodegenerative pathology. We posit that certain activated states of microglia play a role in maintaining the delicate balance of BDNF release onto neuronal synapses. This focused review will address how different "activators" influence the expression and release of microglial BDNF and address the question of tropomyosin receptor kinase B (TrkB) expression on microglia. We will then assess sex-based differences in microglial function and BDNF expression, and how microglia are involved in the stress response and related disorders such as depression. Drawing on research from a variety of other disorders, we will highlight challenges and opportunities for modulators that can shift microglia to a "trophic" phenotype with a view to potential therapeutics relevant for stressor-related disorders.
Macrophage-derived interleukin-6 is necessary and sufficient for choroidal angiogenesis
Droho, S;Cuda, CM;Perlman, H;Lavine, JA;
PMID: 34508129 | DOI: 10.1038/s41598-021-97522-x
Neovascular age-related macular degeneration (nAMD) commonly causes vision loss from aberrant angiogenesis, termed choroidal neovascularization (CNV). Interleukin-6 (IL6) is a pro-inflammatory and pro-angiogenic cytokine that is correlated with AMD progression and nAMD activity. We hypothesize that anti-IL6 therapy is a potential nAMD therapeutic. We found that IL6 levels were increased after laser injury and expressed by macrophages. Il6-deficiency decreased laser-induced CNV area and exogenous IL6 addition increased choroidal sprouting angiogenesis. Il6-null mice demonstrated equally increased macrophage numbers as wildtype mice. At steady state, IL6R expression was detected on peripheral blood and ocular monocytes. After laser injury, the number of IL6R+Ly6C+ monocytes in blood and IL6R+ macrophages in the eye were increased. In human choroid, macrophages expressed IL6, IL6R, and IL6ST. Furthermore, IL6R+ macrophages displayed a transcriptional profile consistent with STAT3 (signal transducer and activator of transcription 3) activation and angiogenesis. Our data show that IL6 is both necessary and sufficient for choroidal angiogenesis. Macrophage-derived IL6 may stimulate choroidal angiogenesis via classical activation of IL6R+ macrophages, which then stimulate angiogenesis. Targeting IL6 or the IL6R could be an effective adjunctive therapy for treatment-resistant nAMD patients.
Diversity of developing peripheral glia revealed by single-cell RNA sequencing
Tasdemir-Yilmaz, OE;Druckenbrod, NR;Olukoya, OO;Dong, W;Yung, AR;Bastille, I;Pazyra-Murphy, MF;Sitko, AA;Hale, EB;Vigneau, S;Gimelbrant, AA;Kharchenko, PV;Goodrich, LV;Segal, RA;
PMID: 34469751 | DOI: 10.1016/j.devcel.2021.08.005
The peripheral nervous system responds to a wide variety of sensory stimuli, a process that requires great neuronal diversity. These diverse neurons are closely associated with glial cells originating from the neural crest. However, the molecular nature and diversity among peripheral glia are not understood. Here, we used single-cell RNA sequencing to profile developing and mature glia from somatosensory dorsal root ganglia and auditory spiral ganglia. We found that glial precursors (GPs) in these two systems differ in their transcriptional profiles. Despite their unique features, somatosensory and auditory GPs undergo convergent differentiation to generate molecularly uniform myelinating and non-myelinating Schwann cells. By contrast, somatosensory and auditory satellite glial cells retain system-specific features. Lastly, we identified a glial signature gene set, providing new insights into commonalities among glia across the nervous system. This survey of gene expression in peripheral glia constitutes a resource for understanding functions of glia across different sensory modalities.
The Use of Paraffin Blocks/Pathology Archives for Clinical Biobanking
Biobanking of Human Biospecimens
Stanta, G;Bonin, S;
| DOI: 10.1007/978-3-030-55901-4_5
Every human tissue collected from surgery or biopsy is formalin-fixed and paraffin-embedded (FFPE). A huge quantity of human tissues is preserved in hospitals, and it is possible to estimate that in Europe about three hundred million new specimens of tissues are stored in archives every year. These archive tissues (AT) represent any type of even rare pathological lesions with a number of cases sufficient for any possible study. Frequent evidence of acquired resistance to the new targeted therapies has posed clinicians new issues to be addressed, such as the need to go back to patients’ tissues. Increasingly more often we have to use ATs because of clinical research, which is now starting to be an integrated process with applied medicine. We cannot separate clinics from clinical research, it is a unique entity. This creates new necessities such as better quality ATs, more standardized methods, a careful choice of the tissues, and a better organization. The pathology archives of hospitals are clinical biorepositories that are different from a research biobank. The major difference is related to the clinical purpose of these archives; even though this may not seem to be an obstacle to their utilization for research purposes, it is perfectly fitted with the most recent necessities of a kind of clinical research that is strictly related to medicine and perfectly integrated into it. The use of AT biorepositories represents a peculiar type of tissue as a source that also needs a different bioethical approach.