Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (1414)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • (-) Remove TBD filter TBD (1413)
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope (219) Apply RNAscope filter
  • TBD (148) Apply TBD filter
  • RNAscope Multiplex Fluorescent Assay (40) Apply RNAscope Multiplex Fluorescent Assay filter
  • Basescope (10) Apply Basescope filter
  • RNAscope 2.5 HD Brown Assay (9) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope Fluorescent Multiplex Assay (9) Apply RNAscope Fluorescent Multiplex Assay filter
  • DNAscope HD Duplex Reagent Kit (8) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (7) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope HiPlex v2 assay (7) Apply RNAscope HiPlex v2 assay filter
  • RNAscope 2.5 HD Duplex (5) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope Multiplex Fluorescent v2 (5) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 HD Red assay (3) Apply RNAscope 2.5 HD Red assay filter
  • BASEscope Assay RED (2) Apply BASEscope Assay RED filter
  • DNAscope Duplex Assay (1) Apply DNAscope Duplex Assay filter
  • miRNAscope (1) Apply miRNAscope filter
  • RNAscope 2.5 HD Assay (1) Apply RNAscope 2.5 HD Assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex Image Registration Software (1) Apply RNAscope HiPlex Image Registration Software filter

Research area

  • Neuroscience (138) Apply Neuroscience filter
  • Cancer (108) Apply Cancer filter
  • Development (54) Apply Development filter
  • Other: Methods (44) Apply Other: Methods filter
  • Inflammation (32) Apply Inflammation filter
  • Infectious (18) Apply Infectious filter
  • HIV (15) Apply HIV filter
  • Pain (14) Apply Pain filter
  • Stem Cells (13) Apply Stem Cells filter
  • HPV (12) Apply HPV filter
  • Other: Neuromuscular Disorders (10) Apply Other: Neuromuscular Disorders filter
  • Other: Heart (9) Apply Other: Heart filter
  • Other: Lung (9) Apply Other: Lung filter
  • CGT (8) Apply CGT filter
  • Covid (8) Apply Covid filter
  • Other: Metabolism (8) Apply Other: Metabolism filter
  • Infectious Disease (7) Apply Infectious Disease filter
  • Stem cell (7) Apply Stem cell filter
  • Immunotherapy (6) Apply Immunotherapy filter
  • Metabolism (6) Apply Metabolism filter
  • Other: Reproduction (6) Apply Other: Reproduction filter
  • Endocrinology (5) Apply Endocrinology filter
  • LncRNAs (5) Apply LncRNAs filter
  • Obesity (5) Apply Obesity filter
  • Reproduction (5) Apply Reproduction filter
  • Aging (4) Apply Aging filter
  • Cystic Fibrosis (4) Apply Cystic Fibrosis filter
  • Heart (4) Apply Heart filter
  • Itch (4) Apply Itch filter
  • lncRNA (4) Apply lncRNA filter
  • Other: Kidney (4) Apply Other: Kidney filter
  • Other: Skin (4) Apply Other: Skin filter
  • Transcriptomics (4) Apply Transcriptomics filter
  • Alzheimer's Disease (3) Apply Alzheimer's Disease filter
  • diabetes (3) Apply diabetes filter
  • Immunology (3) Apply Immunology filter
  • Kidney (3) Apply Kidney filter
  • Memory (3) Apply Memory filter
  • other: Aging (3) Apply other: Aging filter
  • Other: Eyes (3) Apply Other: Eyes filter
  • Other: Gut (3) Apply Other: Gut filter
  • Other: Huntington’s Disease (3) Apply Other: Huntington’s Disease filter
  • Other: Transcriptomics (3) Apply Other: Transcriptomics filter
  • Other: Zoological Disease (3) Apply Other: Zoological Disease filter
  • Psychiatry (3) Apply Psychiatry filter
  • Regeneration (3) Apply Regeneration filter
  • Reproductive Biology (3) Apply Reproductive Biology filter
  • Skin (3) Apply Skin filter
  • Stress (3) Apply Stress filter
  • Tumor microenvironment (3) Apply Tumor microenvironment filter

Category

  • Publications (1414) Apply Publications filter
Opportunities for High-plex Spatial Transcriptomics in Solid Organ Transplantation

Transplantation

2023 Mar 22

Cross, AR;Gartner, L;Hester, J;Issa, F;
PMID: 36944604 | DOI: 10.1097/TP.0000000000004587

The last 5 y have seen the development and widespread adoption of high-plex spatial transcriptomic technology. This technique detects and quantifies mRNA transcripts in situ, meaning that transcriptomic signatures can be sampled from specific cells, structures, lesions, or anatomical regions while conserving the physical relationships that exist within complex tissues. These methods now frequently implement next-generation sequencing, enabling the simultaneous measurement of many targets, up to and including the whole mRNA transcriptome. To date, spatial transcriptomics has been foremost used in the fields of neuroscience and oncology, but there is potential for its use in transplantation sciences. Transplantation has a clear dependence on biopsies for diagnosis, monitoring, and research. Transplant patients represent a unique cohort with multiple organs of interest, clinical courses, demographics, and immunosuppressive regimens. Obtaining high complexity data on the disease processes underlying rejection, tolerance, infection, malignancy, and injury could identify new opportunities for therapeutic intervention and biomarker identification. In this review, we discuss currently available spatial transcriptomic technologies and how they can be applied to transplantation.
Advances and Challenges in Spatial Transcriptomics for Developmental Biology

Biomolecules

2023 Jan 12

Choe, K;Pak, U;Pang, Y;Hao, W;Yang, X;
PMID: 36671541 | DOI: 10.3390/biom13010156

Development from single cells to multicellular tissues and organs involves more than just the exact replication of cells, which is known as differentiation. The primary focus of research into the mechanism of differentiation has been differences in gene expression profiles between individual cells. However, it has predominantly been conducted at low throughput and bulk levels, challenging the efforts to understand molecular mechanisms of differentiation during the developmental process in animals and humans. During the last decades, rapid methodological advancements in genomics facilitated the ability to study developmental processes at a genome-wide level and finer resolution. Particularly, sequencing transcriptomes at single-cell resolution, enabled by single-cell RNA-sequencing (scRNA-seq), was a breath-taking innovation, allowing scientists to gain a better understanding of differentiation and cell lineage during the developmental process. However, single-cell isolation during scRNA-seq results in the loss of the spatial information of individual cells and consequently limits our understanding of the specific functions of the cells performed by different spatial regions of tissues or organs. This greatly encourages the emergence of the spatial transcriptomic discipline and tools. Here, we summarize the recent application of scRNA-seq and spatial transcriptomic tools for developmental biology. We also discuss the limitations of current spatial transcriptomic tools and approaches, as well as possible solutions and future prospects.
Distribution and function of neuronal IL-1R1 in the CNS

Brain, Behavior, and Immunity

2022 Nov 01

Nemeth, D;Liu, X;Kocak, N;Niu, H;Smirnova, M;McGovern, S;Herd, A;DiSabato, D;Floyd, T;Atluri, R;Nusstein, A;Oliver, B;Witcher, K;McKim, D;Gajewski-Kurdziel, P;Godbout, J;Zhang, Q;Blakely, R;Sheridan, J;Quan, N;
| DOI: 10.1016/j.bbi.2022.07.065

Methods: Global and neuronal specific IL-1R1 reporter mice, RNA sequencing analysis, and double-immunofluorescent labeling were used to map and validate nIL-1R1 expression. NF-κB/IL-1R1 co-reporter mice were utilized to detect IL-1R1 and NF-κB expression following intracerebroventricular (i.c.v.) IL-1 injections. Basescope in situ hybridization was utilized to detect splice variants of IL-1R Accessory Protein (IL-1AcP). Unpredictable foot shock (6x shocks over 1hr for 6d) was employed as a chronic stress paradigm. Results: IL-1R1 is expressed in subsets of glutamatergic or serotonergic neurons, with highest expression in the dentate gyrus (DG) and dorsal raphe nucleus (DRN). I.c.v. IL-1β injection reveals nIL-1R1 does not signal through the canonical NF-κB pathway, whereas endothelia and ventricular IL-1R1s do. We identified that neurons of the DG and DRN express the alternatively spliced IL-1RAcP Isoform B (IL-1RAcPb). Additional results suggest that nIL-1R1 may become reactive to IL-1 when neuronal expression of IL-1RAcPb shifts to the canonical IL-1RAcP following stress. Consequently, nIL-1R1 mediates activation of microglia near nIL-1R1 neurons. Conclusions: These data suggest that regional specific nIL-1R1 may require a culmination of stress and inflammatory signals to unlock nIL-1R1 signaling. Overall, these data provide a map of nIL-1R1 and its corresponding accessory protein in the brain along with a potential output of nIL-1R1 signaling.
Far from home: the role of glial mRNA localization in synaptic plasticity

RNA (New York, N.Y.)

2022 Nov 28

Gala, DS;Titlow, JS;Teodoro, RO;Davis, I;
PMID: 36442969 | DOI: 10.1261/rna.079422.122

Neurons and glia are highly polarized cells, whose distal cytoplasmic functional subdomains require specific proteins. Neurons have axonal and dendritic cytoplasmic extensions containing synapses requiring mRNA transport and localized translation to regulate synaptic plasticity efficiently. The principles behind these mechanisms are equally attractive for explaining rapid local regulation of distal glial cytoplasmic projections, independent of their cell nucleus. However, in contrast to neurons, this topic has received little experimental attention in glia. Nevertheless, there are many functionally diverse glial sub-types, containing extensive networks of long cytoplasmic projections with likely localized regulation that influence neurons and their synapses. Moreover, glia have many other neuron-like properties, including electrical activity, secretion of gliotransmitters and calcium signaling, influencing for example synaptic transmission, plasticity and axon pruning. Here, we review previous studies concerning glial transcripts with important roles in influencing synaptic plasticity, focusing on a few cases involving localized translation. We discuss a variety of important questions about mRNA transport and localized translation in glia that remain to be addressed using cutting-edge tools already available for neurons.
Plap-1 lineage tracing and single-cell transcriptomics reveal cellular dynamics in the periodontal ligament

Development (Cambridge, England)

2022 Oct 01

Iwayama, T;Iwashita, M;Miyashita, K;Sakashita, H;Matsumoto, S;Tomita, K;Bhongsatiern, P;Kitayama, T;Ikegami, K;Shimbo, T;Tamai, K;Murayama, MA;Ogawa, S;Iwakura, Y;Yamada, S;Olson, LE;Takedachi, M;Murakami, S;
PMID: 36245218 | DOI: 10.1242/dev.201203

Periodontal tissue supports teeth in the alveolar bone socket via fibrous attachment of the periodontal ligament (PDL). The PDL contains periodontal fibroblasts and stem/progenitor cells, collectively known as PDL cells (PDLCs), on top of osteoblasts and cementoblasts on the surface of alveolar bone and cementum, respectively. However, the characteristics and lineage hierarchy of each cell type remain poorly defined. This study identified periodontal ligament associated protein-1 (Plap-1) as a PDL-specific extracellular matrix protein. We generated knock-in mice expressing CreERT2 and GFP specifically in Plap-1-positive PDLCs. Genetic lineage tracing confirmed the long-standing hypothesis that PDLCs differentiate into osteoblasts and cementoblasts. A PDL single-cell atlas defined cementoblasts and osteoblasts as Plap-1-Ibsp+Sparcl1+ and Plap-1-Ibsp+Col11a2+, respectively. Other populations, such as Nes+ mural cells, S100B+ Schwann cells, and other non-stromal cells, were also identified. RNA velocity analysis suggested that a Plap-1highLy6a+ cell population was the source of PDLCs. Lineage tracing of Plap-1+ PDLCs during periodontal injury showed periodontal tissue regeneration by PDLCs. Our study defines diverse cell populations in PDL and clarifies the role of PDLCs in periodontal tissue homeostasis and repair.
Protease-Activated Receptors in Health and Disease

Physiological reviews

2022 Jul 28

Peach, CJ;Edgington-Mitchell, LE;Bunnett, NW;Schmidt, BL;
PMID: 35901239 | DOI: 10.1152/physrev.00044.2021

Although generally regarded as degradatory enzymes, certain proteases are also signaling molecules that specifically control cellular functions by cleaving protease-activated receptors (PARs). The four known PARs are members of the large family of G protein-coupled receptors. These transmembrane receptors control most physiological and pathological processes and are the target of a large proportion of therapeutic drugs. Signaling proteases include enzymes from the circulation, from immune, inflammatory epithelial and cancer cells, as well as from commensal and pathogenic bacteria. Advances in our understanding of the structure and function of PARs provide insights into how diverse proteases activate these receptors to regulate physiological and pathological processes in most tissues and organ systems. The realization that proteases and PARs are key mediators of disease, coupled with advances in understanding the atomic level structure of PARs and their mechanisms of signaling in subcellular microdomains, has spurred the development of antagonists, some of which have advanced to the clinic. Herein we review the discovery, structure and function of this receptor system, highlight the contribution of PARs to homeostatic control, and discuss the potential of PAR antagonists for the treatment of major diseases.
Single Cell Transcriptomic Analysis of the Identity and Function of Fibro/Adipogenic Progenitors in Healthy and Dystrophic Muscle

SSRN Electronic Journal

2022 Jun 01

Uapinyoying, P;Hogarth, M;Battacharya, S;Mázala, D;Panchapakesan, K;Bonnemann, C;Jaiswal, J;
| DOI: 10.2139/ssrn.4120770

Fibro/adipogenic progenitors (FAPs) are skeletal muscle stromal cells that support regeneration of injured myofibers and their maintenance in healthy muscles. FAPs are related to mesenchymal stem cells (MeSCs) found in other adult tissues, but there is poor understanding of the extent of similarity between these cells. Using single cell RNA sequencing (scRNA-seq) datasets from multiple mouse tissues we have performed comparative transcriptomic analysis between these cells. This identified remarkable transcriptional similarity between FAPs and MeSCs and confirmed the suitability of PDGFRα as a reliable reporter for FAPs. It also identified extracellular proteolysis as a new function of FAPs. Using PDGFRα as a cell surface marker, we isolated FAPs from healthy and dysferlinopathic mouse muscles and performed scRNA-seq analysis. This identified decreased FAP-mediated Wnt signaling as a potential driver of FAP dysfunction in dysferlinopathic muscles. Analysis of FAPs in dysferlin- and dystrophindeficient muscles identified distinct FAP-specific gene expression changes between these diseases that show existence of reciprocal relationship between muscle pathology and FAP gene expression.
Microbiome-mediated incapacitation of interferon lambda production in the oral mucosa

Proceedings of the National Academy of Sciences of the United States of America

2021 Dec 21

Rodriguez-Hernandez, CJ;Sokoloski, KJ;Stocke, KS;Dukka, H;Jin, S;Metzler, MA;Zaitsev, K;Shpak, B;Shen, D;Miller, DP;Artyomov, MN;Lamont, RJ;Bagaitkar, J;
PMID: 34921113 | DOI: 10.1073/pnas.2105170118

Here, we show that Porphyromonas gingivalis (Pg), an endogenous oral pathogen, dampens all aspects of interferon (IFN) signaling in a manner that is strikingly similar to IFN suppression employed by multiple viral pathogens. Pg suppressed IFN production by down-regulating several IFN regulatory factors (IRFs 1, 3, 7, and 9), proteolytically degrading STAT1 and suppressing the nuclear translocation of the ISGF3 complex, resulting in profound and systemic repression of multiple interferon-stimulated genes. Pg-induced IFN paralysis was not limited to murine models but was also observed in the oral tissues of human periodontal disease patients, where overabundance of Pg correlated with suppressed IFN generation. Mechanistically, multiple virulence factors and secreted proteases produced by Pg transcriptionally suppressed IFN promoters and also cleaved IFN receptors, making cells refractory to exogenous IFN and inducing a state of broad IFN paralysis. Thus, our data show a bacterial pathogen with equivalence to viruses in the down-regulation of host IFN signaling.
Characterization of the Nonendocrine Cell Populations in Human Embryonic Stem Cell-Derived (hESC) Islet-Like Clusters Posttransplantation

Toxicologic pathology

2021 Oct 01

Jensen, NK;Ingvorsen, C;Petersen, DR;Pereira, MJ;Lu, TTH;Alsted, TJ;Kirkegaard, JS;Keane, KA;
PMID: 34555946 | DOI: 10.1177/01926233211036395

Islet-like clusters derived from human embryonic stem cells (hESC) hold the potential to cure type 1 diabetes mellitus. Differentiation protocols of islet-like clusters lead to the generation of minor fractions of nonendocrine cells, which are mainly from endodermal and mesodermal lineages, and the risk of implanting these is unclear. In the present study, the histogenesis and the tumorigenicity of nonendocrine cells were investigated in vivo. Immunodeficient mice were implanted under the kidney capsule with islet-like clusters which were derived from differentiation of cells batches with either an intermediate or poor cell purity and followed for 8 or 26 weeks. Using immunohistochemistry and other techniques, it was found that the intermediate differentiated cell implants had limited numbers of small duct-like cysts and nonpancreatic tissue resembling gastrointestinal and retinal pigmented epithelium. In contrast, highly proliferative cystic teratomas were found at a high incidence at the implant site after 8 weeks, only in the animals implanted with the poorly differentiated cells. These findings indicate that the risk for teratoma formation and the amount of nonpancreatic tissue can be minimized by careful in-process characterization of the cells and thus highlights the importance of high purity at transplantation and a thorough ex-vivo characterization during cell product development.
Single-nucleus transcriptome analysis reveals cell-type-specific molecular signatures across reward circuitry in the human brain

Neuron

2021 Sep 21

Tran, MN;Maynard, KR;Spangler, A;Huuki, LA;Montgomery, KD;Sadashivaiah, V;Tippani, M;Barry, BK;Hancock, DB;Hicks, SC;Kleinman, JE;Hyde, TM;Collado-Torres, L;Jaffe, AE;Martinowich, K;
PMID: 34582785 | DOI: 10.1016/j.neuron.2021.09.001

Single-cell gene expression technologies are powerful tools to study cell types in the human brain, but efforts have largely focused on cortical brain regions. We therefore created a single-nucleus RNA-sequencing resource of 70,615 high-quality nuclei to generate a molecular taxonomy of cell types across five human brain regions that serve as key nodes of the human brain reward circuitry: nucleus accumbens, amygdala, subgenual anterior cingulate cortex, hippocampus, and dorsolateral prefrontal cortex. We first identified novel subpopulations of interneurons and medium spiny neurons (MSNs) in the nucleus accumbens and further characterized robust GABAergic inhibitory cell populations in the amygdala. Joint analyses across the 107 reported cell classes revealed cell-type substructure and unique patterns of transcriptomic dynamics. We identified discrete subpopulations of D1- and D2-expressing MSNs in the nucleus accumbens to which we mapped cell-type-specific enrichment for genetic risk associated with both psychiatric disease and addiction.
Shifting Gears in Precision Oncology-Challenges and Opportunities of Integrative Data Analysis

Biomolecules

2021 Sep 04

Noh, KW;Buettner, R;Klein, S;
PMID: 34572523 | DOI: 10.3390/biom11091310

For decades, research relating to modification of host immunity towards antitumor response activation has been ongoing, with the breakthrough discovery of immune-checkpoint blockers. Several biomarkers with potential predictive value have been reported in recent studies for these novel therapies. However, with the plethora of therapeutic options existing for a given cancer entity, modern oncology is now being confronted with multifactorial interpretation to devise "the best therapy" for the individual patient. Into the bargain come the multiverse guidelines for established and emerging diagnostic biomarkers, as well as the complex interplay between cancer cells and tumor microenvironment, provoking immense challenges in the therapy decision-making process. Through this review, we present various molecular diagnostic modalities and techniques, such as genomics, immunohistochemistry and quantitative image analysis, which have the potential of becoming powerful tools in the development of an optimal treatment regime when analogized with patient characteristics. We will summarize the underlying complexities of these methods and shed light upon the necessary considerations and requirements for data integration. It is our hope to provide compelling evidence to emphasize on the need for inclusion of integrative data analysis in modern cancer therapy, and thereupon paving a path towards precision medicine and better patient outcomes.
Anterior thalamic dysfunction underlies cognitive deficits in a subset of neuropsychiatric disease models

Neuron

2021 Jun 22

Roy, DS;Zhang, Y;Aida, T;Choi, S;Chen, Q;Hou, Y;Lea, NE;Skaggs, KM;Quay, JC;Liew, M;Maisano, H;Le, V;Jones, C;Xu, J;Kong, D;Sullivan, HA;Saunders, A;McCarroll, SA;Wickersham, IR;Feng, G;
PMID: 34197733 | DOI: 10.1016/j.neuron.2021.06.005

Neuropsychiatric disorders are often accompanied by cognitive impairments/intellectual disability (ID). It is not clear whether there are converging mechanisms underlying these debilitating impairments. We found that many autism and schizophrenia risk genes are expressed in the anterodorsal subdivision (AD) of anterior thalamic nuclei, which has reciprocal connectivity with learning and memory structures. CRISPR-Cas9 knockdown of multiple risk genes selectively in AD thalamus led to memory deficits. While the AD is necessary for contextual memory encoding, the neighboring anteroventral subdivision (AV) regulates memory specificity. These distinct functions of AD and AV are mediated through their projections to retrosplenial cortex, using differential mechanisms. Furthermore, knockdown of autism and schizophrenia risk genes PTCHD1, YWHAG, or HERC1 from AD led to neuronal hyperexcitability, and normalization of hyperexcitability rescued memory deficits in these models. This study identifies converging cellular to circuit mechanisms underlying cognitive deficits in a subset of neuropsychiatric disease models.

Pages

  • « first
  • ‹ previous
  • …
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?