Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (1414)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • (-) Remove TBD filter TBD (1413)
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope (219) Apply RNAscope filter
  • TBD (148) Apply TBD filter
  • RNAscope Multiplex Fluorescent Assay (40) Apply RNAscope Multiplex Fluorescent Assay filter
  • Basescope (10) Apply Basescope filter
  • RNAscope 2.5 HD Brown Assay (9) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope Fluorescent Multiplex Assay (9) Apply RNAscope Fluorescent Multiplex Assay filter
  • DNAscope HD Duplex Reagent Kit (8) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (7) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope HiPlex v2 assay (7) Apply RNAscope HiPlex v2 assay filter
  • RNAscope 2.5 HD Duplex (5) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope Multiplex Fluorescent v2 (5) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 HD Red assay (3) Apply RNAscope 2.5 HD Red assay filter
  • BASEscope Assay RED (2) Apply BASEscope Assay RED filter
  • DNAscope Duplex Assay (1) Apply DNAscope Duplex Assay filter
  • miRNAscope (1) Apply miRNAscope filter
  • RNAscope 2.5 HD Assay (1) Apply RNAscope 2.5 HD Assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex Image Registration Software (1) Apply RNAscope HiPlex Image Registration Software filter

Research area

  • Neuroscience (138) Apply Neuroscience filter
  • Cancer (108) Apply Cancer filter
  • Development (54) Apply Development filter
  • Other: Methods (44) Apply Other: Methods filter
  • Inflammation (32) Apply Inflammation filter
  • Infectious (18) Apply Infectious filter
  • HIV (15) Apply HIV filter
  • Pain (14) Apply Pain filter
  • Stem Cells (13) Apply Stem Cells filter
  • HPV (12) Apply HPV filter
  • Other: Neuromuscular Disorders (10) Apply Other: Neuromuscular Disorders filter
  • Other: Heart (9) Apply Other: Heart filter
  • Other: Lung (9) Apply Other: Lung filter
  • CGT (8) Apply CGT filter
  • Covid (8) Apply Covid filter
  • Other: Metabolism (8) Apply Other: Metabolism filter
  • Infectious Disease (7) Apply Infectious Disease filter
  • Stem cell (7) Apply Stem cell filter
  • Immunotherapy (6) Apply Immunotherapy filter
  • Metabolism (6) Apply Metabolism filter
  • Other: Reproduction (6) Apply Other: Reproduction filter
  • Endocrinology (5) Apply Endocrinology filter
  • LncRNAs (5) Apply LncRNAs filter
  • Obesity (5) Apply Obesity filter
  • Reproduction (5) Apply Reproduction filter
  • Aging (4) Apply Aging filter
  • Cystic Fibrosis (4) Apply Cystic Fibrosis filter
  • Heart (4) Apply Heart filter
  • Itch (4) Apply Itch filter
  • lncRNA (4) Apply lncRNA filter
  • Other: Kidney (4) Apply Other: Kidney filter
  • Other: Skin (4) Apply Other: Skin filter
  • Transcriptomics (4) Apply Transcriptomics filter
  • Alzheimer's Disease (3) Apply Alzheimer's Disease filter
  • diabetes (3) Apply diabetes filter
  • Immunology (3) Apply Immunology filter
  • Kidney (3) Apply Kidney filter
  • Memory (3) Apply Memory filter
  • other: Aging (3) Apply other: Aging filter
  • Other: Eyes (3) Apply Other: Eyes filter
  • Other: Gut (3) Apply Other: Gut filter
  • Other: Huntington’s Disease (3) Apply Other: Huntington’s Disease filter
  • Other: Transcriptomics (3) Apply Other: Transcriptomics filter
  • Other: Zoological Disease (3) Apply Other: Zoological Disease filter
  • Psychiatry (3) Apply Psychiatry filter
  • Regeneration (3) Apply Regeneration filter
  • Reproductive Biology (3) Apply Reproductive Biology filter
  • Skin (3) Apply Skin filter
  • Stress (3) Apply Stress filter
  • Tumor microenvironment (3) Apply Tumor microenvironment filter

Category

  • Publications (1414) Apply Publications filter
Troy/Tnfrsf19 marks epidermal cells that govern interfollicular epidermal renewal and cornification

Stem cell reports

2021 Jul 22

Kretzschmar, K;Boonekamp, KE;Bleijs, M;Asra, P;Koomen, M;Chuva de Sousa Lopes, SM;Giovannone, B;Clevers, H;
PMID: 34358453 | DOI: 10.1016/j.stemcr.2021.07.007

The skin epidermis is a highly compartmentalized tissue consisting of a cornifying epithelium called the interfollicular epidermis (IFE) and associated hair follicles (HFs). Several stem cell populations have been described that mark specific compartments in the skin but none of them is specific to the IFE. Here, we identify Troy as a marker of IFE and HF infundibulum basal layer cells in developing and adult human and mouse epidermis. Genetic lineage-tracing experiments demonstrate that Troy-expressing basal cells contribute to long-term renewal of all layers of the cornifying epithelium. Single-cell transcriptomics and organoid assays of Troy-expressing cells, as well as their progeny, confirmed stem cell identity as well as the ability to generate differentiating daughter cells. In conclusion, we define Troy as a marker of epidermal basal cells that govern interfollicular epidermal renewal and cornification.
An isoform of Dicer protects mammalian stem cells against multiple RNA viruses

Science (New York, N.Y.)

2021 Jul 09

Poirier, EZ;Buck, MD;Chakravarty, P;Carvalho, J;Frederico, B;Cardoso, A;Healy, L;Ulferts, R;Beale, R;Reis E Sousa, C;
PMID: 34244417 | DOI: 10.1126/science.abg2264

In mammals, early resistance to viruses relies on interferons, which protect differentiated cells but not stem cells from viral replication. Many other organisms rely instead on RNA interference (RNAi) mediated by a specialized Dicer protein that cleaves viral double-stranded RNA. Whether RNAi also contributes to mammalian antiviral immunity remains controversial. We identified an isoform of Dicer, named antiviral Dicer (aviD), that protects tissue stem cells from RNA viruses-including Zika virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-by dicing viral double-stranded RNA to orchestrate antiviral RNAi. Our work sheds light on the molecular regulation of antiviral RNAi in mammalian innate immunity, in which different cell-intrinsic antiviral pathways can be tailored to the differentiation status of cells.
Presynaptic NMDA receptors facilitate short-term plasticity and BDNF release at hippocampal mossy fiber synapses

eLife

2021 Jun 01

Lituma, PJ;Kwon, HB;Alviña, K;Luján, R;Castillo, PE;
PMID: 34061025 | DOI: 10.7554/eLife.66612

Neurotransmitter release is a highly controlled process by which synapses can critically regulate information transfer within neural circuits. While presynaptic receptors - typically activated by neurotransmitters and modulated by neuromodulators - provide a powerful way of fine-tuning synaptic function, their contribution to activity-dependent changes in transmitter release remains poorly understood. Here, we report that presynaptic NMDA receptors (preNMDARs) at mossy fiber boutons in the rodent hippocampus can be activated by physiologically relevant patterns of activity and selectively enhance short-term synaptic plasticity at mossy fiber inputs onto CA3 pyramidal cells and mossy cells, but not onto inhibitory interneurons. Moreover, preNMDARs facilitate brain-derived neurotrophic factor release and contribute to presynaptic calcium rise. Taken together, our results indicate that by increasing presynaptic calcium, preNMDARs fine-tune mossy fiber neurotransmission and can control information transfer during dentate granule cell burst activity that normally occur in vivo.
The Known Unknowns of the Immune Response to Coccidioides

Journal of fungi (Basel, Switzerland)

2021 May 11

Ward, RA;Thompson, GR;Villani, AC;Li, B;Mansour, MK;Wuethrich, M;Tam, JM;Klein, BS;Vyas, JM;
PMID: 34065016 | DOI: 10.3390/jof7050377

Coccidioidomycosis, otherwise known as Valley Fever, is caused by the dimorphic fungi Coccidioides immitis and C. posadasii. While most clinical cases present with self-limiting pulmonary infection, dissemination of Coccidioides spp. results in prolonged treatment and portends higher mortality rates. While the structure, genome, and niches for Coccidioides have provided some insight into the pathogenesis of disease, the underlying immunological mechanisms of clearance or inability to contain the infection in the lung are poorly understood. This review focuses on the known innate and adaptive immune responses to Coccidioides and highlights three important areas of uncertainty and potential approaches to address them. Closing these gaps in knowledge may enable new preventative and therapeutic strategies to be pursued.
A spinal organ of proprioception for integrated motor action feedback

Neuron

2021 Feb 03

Picton, LD;Bertuzzi, M;Pallucchi, I;Fontanel, P;Dahlberg, E;Björnfors, ER;Iacoviello, F;Shearing, PR;El Manira, A;
PMID: 33577748 | DOI: 10.1016/j.neuron.2021.01.018

Proprioception is essential for behavior and provides a sense of our body movements in physical space. Proprioceptor organs are thought to be only in the periphery. Whether the central nervous system can intrinsically sense its own movement remains unclear. Here we identify a segmental organ of proprioception in the adult zebrafish spinal cord, which is embedded by intraspinal mechanosensory neurons expressing Piezo2 channels. These cells are late-born, inhibitory, commissural neurons with unique molecular and physiological profiles reflecting a dual sensory and motor function. The central proprioceptive organ locally detects lateral body movements during locomotion and provides direct inhibitory feedback onto rhythm-generating interneurons responsible for the central motor program. This dynamically aligns central pattern generation with movement outcome for efficient locomotion. Our results demonstrate that a central proprioceptive organ monitors self-movement using hybrid neurons that merge sensory and motor entities into a unified network.
Comparison of RNA In Situ Hybridization and Immunohistochemistry Techniques for the Detection and Localization of SARS-CoV-2 in Human Tissues

The American journal of surgical pathology

2021 Jan 01

Massoth, LR;Desai, N;Szabolcs, A;Harris, CK;Neyaz, A;Crotty, R;Chebib, I;Rivera, MN;Sholl, LM;Stone, JR;Ting, DT;Deshpande, V;
PMID: 32826529 | DOI: 10.1097/PAS.0000000000001563

Coronavirus disease-19 (COVID-19) is caused by a newly discovered coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although SARS-CoV-2 is visualized on electron microscopy, there is an increasing demand for widely applicable techniques to visualize viral components within tissue specimens. Viral protein and RNA can be detected on formalin-fixed paraffin-embedded (FFPE) tissue using immunohistochemistry (IHC) and in situ hybridization (ISH), respectively. Herein, we evaluate the staining performance of ISH for SARS-CoV-2 and an IHC directed at the SARS-CoV nucleocapsid protein and compare these results to a gold standard, tissue quantitative real-time polymerase chain reaction (qRT-PCR). We evaluated FFPE sections from 8 COVID-19 autopsies, including 19 pulmonary and 39 extrapulmonary samples including the heart, liver, kidney, small intestine, skin, adipose tissue, and bone marrow. We performed RNA-ISH for SARS-CoV-2 on all cases with IHC for SARS-CoV and SARS-CoV-2 qRT-PCR performed on selected cases. Lungs from 37 autopsies performed before the COVID-19 pandemic served as negative controls. The ISH and IHC slides were reviewed by 4 observers to record a consensus opinion. Selected ISH and IHC slides were also reviewed by 4 independent observers. Evidence of SARS-CoV-2 was identified on both the IHC and ISH platforms. Within the postmortem lung, detected viral protein and RNA were often extracellular, predominantly within hyaline membranes in patients with diffuse alveolar damage. Among individual cases, there was regional variation in the amount of detectable virus in lung samples. Intracellular viral RNA and protein was localized to pneumocytes and immune cells. Viral RNA was detected on RNA-ISH in 13 of 19 (68%) pulmonary FFPE blocks from patients with COVID-19. Viral protein was detected on IHC in 8 of 9 (88%) pulmonary FFPE blocks from patients with COVID-19, although in 5 cases the stain was interpreted as equivocal. From the control cohort, FFPE blocks from all 37 patients were negative for SARS-CoV-2 RNA-ISH, whereas 5 of 13 cases were positive on IHC. Collectively, when compared with qRT-PCR on individual tissue blocks, the sensitivity and specificity for ISH was 86.7% and 100%, respectively, while those for IHC were 85.7% and 53.3%, respectively. The interobserver variability for ISH ranged from moderate to almost perfect, whereas that for IHC ranged from slight to moderate. All extrapulmonary samples from COVID-19-positive cases were negative for SARS-CoV-2 by ISH, IHC, and qRT-PCR. SARS-CoV-2 is detectable on both RNA-ISH and nucleocapsid IHC. In the lung, viral RNA and nucleocapsid protein is predominantly extracellular and within hyaline membranes in some cases, while intracellular locations are more prominent in others. The intracellular virus is detected within pneumocytes, bronchial epithelial cells, and possibly immune cells. The ISH platform is more specific, easier to analyze and the interpretation is associated with the improved interobserver agreement. ISH, IHC, and qRT-PCR failed to detect the virus in the heart, liver, and kidney.
452 Synergistic mucociliary clearance by beta-adrenergic and cholinergic agonists involves epithelial sodium channel inhibition and bicarbonate secretion

Journal of Cystic Fibrosis

2022 Oct 01

Joo, N;Sellers, Z;Wine, J;Milla, C;
| DOI: 10.1016/S1569-1993(22)01142-0

Background: Mucociliary clearance (MCC) is a vital innate defense mechanism that is impaired in people with cystic fibrosis (CF) and animal CF models. Dysfunctional MCC contributes to airway inflammation and infection, which hasten lung function decline. Most people with CF benefit from highly effective CF transmembrane conductance regulator (CFTR) modulators, but some mutations are unresponsive to currently available modulators, and even people with CF who benefit from modulator therapy may be unable to clear chronic pulmonary infections. Accordingly, CFTR-independent methods to increase MCC are needed. We previously discovered that the combination of low-dose cholinergic with βadrenergic agonists synergistically increased MCC velocity (MCCV) in ex vivo tracheal preparations from ferrets and newborn piglets. MCC was also significantly greater in tracheas from CF ferrets to a value of approximately 55% of that in wild-type animals. The MCCV increases were produced without inducing airway narrowing [1]. To further our preclinical work, we tested three hypotheses. We hypothesized that synergistic increases in MCCV by the combined agonists involve epithelial sodium channel (ENaC) inhibition, greater secretion of bicarbonate, and additivity with CFTR modulators. Methods: To test these hypotheses, we measured MCCV in excised newborn piglet tracheas with 10 µM formoterol (beta-adrenergic agonist) plus 0.3 µM methacholine (cholinergic agonist) with and without 10 µM benzamil (ENaC inhibitor) using particle tracking. Bicarbonate secretion rates were measured in tracheal mucosa of Yucatan minipigs mounted in Ussing chambers using a pH-stat method with pH electrodes and automated titrators (Metrohm Titrando 902). To assess whether the synergy agonists improved CF tissues exposed to CFTR modulators, we used high-speed digital microscopy to measure the effective diffusivity (Deff in µm2 /msec) of approximately 2-µm fluorescent polystyrene spheres (0.1%, ThermoFisher) added to the apical surface fluid layer of human CF primary nasal cell cultures (F508del homozygote) grown under air-liquid interface conditions with and without elexacaftor/ tezacaftor/ivacaftor (ELX/TEZ/IVA) (3 μM ELX, 3 μM TEZ, 10 μM IVA). Results: Baseline MCCV was 6 times as high with benzamil inhibition of ENaC (0.5 ± 0.7 mm/min to 3.0 ± 0.7 mm/min; p = 0.02, 4 piglets), but when benzamil was present during synergistically stimulated MCCV, no further increase was seen, consistent with the hypothesis that ENaC was already inhibited by the synergy agonists (MCCV: synergy agonists, 13.9 ± 1.6 mm/ min vs. synergy agonists + benzamil, 14.0 ± 1.6 mm/min; p = 0.97, n = 4 piglets, each condition). The synergy agonists increased bicarbonate secretion rates by about 83% (0.6 ± 0.2 µmol/cm2 per hour at baseline vs. 1.1 ± 0.3 µmol/cm2 per hour with synergy agonists, 5 experiments with 3 pig tracheas). Particle diffusivity in CF primary nasal cell cultures showed synergy agonists plus ELX/TEZ/IVA > synergy agonists > ELX/TEZ/IVA > no treatment. Conclusions: Results were consistent with our hypotheses. The combination of beta adrenergic plus low-dose cholinergic agonists produces synergistic increases in MCCV by inhibiting ENaC and increasing bicarbonate secretion and appears to be at least additive to the effects induced by ELX/TEZ/IVA modulator therapy.
496: Reduced susceptibility of mice with CF-like lung disease to SARS-CoV-2 infection

Journal of Cystic Fibrosis

2021 Nov 01

Hawkins, P;Okuda, K;Leist, S;Schafër, A;Gilmore, R;Volmer, A;Chua, M;Livraghi-Butrico, A;O’Neal, W;Baric, R;Boucher, R;Pickles, R;
| DOI: 10.1016/S1569-1993(21)01920-2

Background: SARS-CoV-2 (SARS2) continues to place an unprecedented burden on global health. SARS2 is a respiratory virus that, in a minority of patients, causes severe pneumonia, which portends a poor prognosis. There is emerging evidence of long-term respiratory sequelae secondary to SARS2, including impaired lung function and persistent lung imaging abnormalities. CF patients often face prolonged morbidity and exacerbation of lung disease as a consequence of respiratory virus infection. Although small observational studies indicate that outcomes of SARS2 infection in people with CF are similar to those of the general population, the impact of SARS2 infection on CF lung disease is not known. Accordingly, we investigated the clinical, pathological, and molecular impact of SARS2 infection in mice with CF-like lung disease. Methods: β-epithelial sodium channel (Scnn1b) transgenic mice (βENaCTg) and wild-type (WT) littermates were inoculated intranasally with a mouse-adapted SARS2 virus (maSARS2). Clinical characteristics, including body weight, were recorded daily. At 2, 15, and 30 days postinoculation (dpi), lungs were harvested and left lobes prepared as histological sections for analysis by light microscopy (hematoxylin and eosin, AB-PAS), immunohistochemistry (IHC), and RNA in situ hybridization (ISH, RNAScope). The remainder of the lungs were used to determine virus titers. Results: βENaC-Tg mice lost less weight than WT mice (5% vs 11% weight loss at 4 dpi, P < 0.05). SARS2 nucleocapsid protein was less abundant in βENaC-Tg mice than in WT mice as measured by IHC (2.2% total lung area infected vs 5.2%, P < 0.05). βENaC-Tg mice had significantly less SARS2 mRNA in the epithelial cells of the airways, as measured by RNA ISH (1341 µm2 /mm vs 7018 µm2 /mm of basement membrane, P < 0.001)—a measurement reproduced with IHC for SARS2 nucleocapsid. Airway epithelium of βENaC-Tg negative for SARS2 infection was overlaid by greater accumulations of mucus secretions as measured by AB-PAS staining. Analysis of chronic outcomes of infection at 15 and 30 dpi revealed that lungs of βENaC-Tg mice but not WT mice had accumulations of alternatively activated macrophages (Ym1) and eosinophils (major basic protein). In addition, at these later time points, βENaC-Tg mice had evidence of more airway goblet cells and basal cell proliferation (p63). Conclusion: In the early phase of infection, βENaC-Tg mice were less severely infected by SARS2 than WT mice. After this early phase, βENaC-Tg mice developed a Th2-type immune response with persistent accumulation of alternatively activated macrophages, eosinophils, and goblet cell metaplasia. Our findings suggest that airway mucus accumulation, as is seen in CF patients, may offer protection against initial SARS2 infection of the airway epithelium, although infection of the distal lung in CF patients may be associated with a more severe chronic course of disease
Efficient RNA and RNA-protein co-detection in 3D colonoids by whole-mount staining

STAR protocols

2022 Dec 16

Atanga, R;Parra, AS;In, JG;
PMID: 36313534 | DOI: 10.1016/j.xpro.2022.101775

Here, we describe a protocol to visualize RNA oligos and proteins independently or together using a combination of fluorescence in situ hybridization (FISH) and immunofluorescence in human colonoids, expanding on previously published research. Whole-mount staining is used to preserve the colonoid structure and fix onto glass slides. We describe procedures for efficient plating, fixation, and preservation of the colonoids. This workflow can be adapted to 3D organoid models from other tissues or organisms. For complete details on the use and execution of this protocol, please refer to In et al. (2020).
Analysis of epicardial genes in embryonic mouse hearts with flow cytometry

STAR Protocols

2021 Mar 01

Redpath, A;Lupu, I;Smart, N;
| DOI: 10.1016/j.xpro.2021.100359

Genetic markers used to define discrete cell populations are seldom expressed exclusively in the population of interest and are, thus, unsuitable when evaluated individually, especially in the absence of spatial and morphological information. Here, we present fluorescence _in situ_ hybridization for flow cytometry to allow simultaneous analysis of multiple marker genes at the single whole-cell level, exemplified by application to the embryonic epicardium. The protocol facilitates multiplexed quantification of gene and protein expression and temporal changes across specific cell populations.
214: Improvement in fat-soluble vitamin levels following highly effective CFTR modulator use in children with CF

Journal of Cystic Fibrosis

2021 Nov 01

Kuffel, H;Hoppe, J;Meier, M;Mark, J;Wagner, B;Towler, E;Zemanick, E;
| DOI: 10.1016/S1569-1993(21)01639-8

Background: People with CF are at risk for malnutrition and fat-soluble vitamin deficiencies due to pancreatic insufficiency and fat malabsorption. Highly effective CFTR modulators, ivacaftor and elexacaftor/tezacaftor/ ivacaftor, substantially improve CFTR activity, lung function and nutritional status (weight and body mass index) in people with CF with certain genetic mutations [1, 2]. Fat-soluble vitamin levels (vitamins A, D, and E) are assessed annually in children with CF. We sought to determine changes in fat-soluble vitamin levels following treatment with ivacaftor or elexacaftor/ tezacaftor/ivacaftor. Methods: We performed a retrospective study of children with CF who had at least 3 annual evaluations including vitamin A, D, and E prior to ivacaftor or elexacaftor/tezacaftor/ivacaftor start date and at least 1 evaluation ≥ 3 months post-modulator start date. Data collected included demographics, CF diagnostic data, pancreatic status, nutritional status, and lung function. Summary statistics were calculated and vitamin levels were compared pre to post modulator within group via signed rank tests. Results: There were 24 children with CF prescribed highly effective CFTR modulators who met annual evaluation criteria (15 on elexacaftor/ tezacaftor/ivacaftor [62.5%] and 9 on ivacaftor [37.5%]). Individuals had a median age 13.8 years (range 12-15) for elexacaftor/tezacaftor/ivacaftor and 9.7 years (range 6.6-13.2) for ivacaftor. All individuals treated with elexacaftor/tezacaftor/ivacaftor were pancreatic insufficient, whereas 7/9 (78%) of those treated with ivacaftor were pancreatic sufficient. Individuals had a median of 6 annual evaluations over a median 5.2 years (timing of each annual measurement ranged 0.04-11.9 years) prior to modulator and 1 evaluation post modulator over 3.2 years. For children treated with ivacaftor, vitamin levels were not significantly different following treatment with mean (SD) levels before and after modulator treatment: vitamin A 41 (9.8) mcg/dL vs 51 (21.4) mcg/dL, P = 0.13; vitamin D 40 (5.0) ng/mL vs 47 (20.3) ng/mL, P = 0.57; and vitamin E (alpha tocopherol) 14 (4.4) mcg/ mL vs 18 (0.6) mcg/mL, P = 0.5. Average change within individuals was also not significant. For children treated with elexacaftor/tezacaftor/ivacaftor, mean vitamin levels increased following modulator treatment: vitamin A 36 (6.2) mcg/dL vs 47 (9.8) mcg/dL, p < 0.01; vitamin D 34 (6.0) ng/mL vs 44 (15.5) ng/mL, P = 0.01. Change in vitamin levels within individuals was also significantly improved (vitamin D increased on average 9.9 ng/mL, p < 0.01; vitamin A increased on average 10.3 mcg/dL, p < 0.01). Conclusion: Children treated with elexacaftor/tezacaftor/ivacaftor had improvement in fat-soluble vitamins A and D following at least 3 months of treatment. Vitamin levels did not change in those treated with ivacaftor, possibly due to small numbers, fewer pancreatic-insufficient patients, or less impact on fat absorption compared to elexacaftor/tezacaftor/ivacaftor. Evaluation of additional children started on elexacaftor/tezacaftor/ivacaftor and longer follow-up are needed to determine if significant changes in vitamin levels persist.
96P Goblet cell differentiation in colorectal cancer

Annals of Oncology

2022 Oct 01

Abdullayeva, G;Liebe, V;Bodmer, W;
| DOI: 10.1016/j.annonc.2022.09.097

Background In the large intestine, the multipotent stem cells are located at the base of the crypt and differentiate into three main cell types: enterocytes, goblet cells, and enteroendocrine cells. Goblet cells’ main function is the synthesis and secretion of mucins. Genetic and epigenetic changes that provide survival advantages for stem or progenitor cells resulting in the deregulation of cellular differentiation are major causes of all carcinomas. Methods Our laboratory has a large collection of colorectal cancer (CRC) cell lines, well characterised in terms of gene expression and mutations. We analysed the presence of goblet cells in CRC cell lines using the genes Mucin 2 (MUC2) and Trefoil factor 3 (TFF3). The genes both at the mRNA level and at the protein level were investigated. The effects of various transcription factors were assessed by knockdown and overexpression techniques. Results We found that most of the cell lines are unable to produce goblet cells and that the number of MUC2 and TFF3-positive cells among the goblet cell positive cell lines was quite variable. While in the normal colon, MUC2 and TFF3 are always co-expressed, but that is not always the case in the CRC cell lines. MUC2-negative and TFF3-positive cell lines appear to reflect a novel interesting subset. The investigation of several transcription factors on goblet cell differentiation showed that downregulation of Atonal homologue 1 (ATOH1) had a dramatic effect on goblet cell production, while knocking down of SAM pointed domain ETS transcription factor (SPDEF), Caudal type homeobox 1 (CDX1), and 2 (CDX2) had a modest effect. Individually, none of these factors are sufficient to trigger the goblet cell differentiation. Conclusions As a conclusion, the percentage of goblet cells differs substantially between cell lines. Classification of the cell lines reveals an interesting major subset that has TFF3 expression without expressing MUC2. ATOH1, SPDEF, CDX1, and CDX2 had a significant effect on goblet cell differentiation, but on their own, they are not sufficient to induce the goblet cell differentiation. Understanding the mechanisms of goblet cell differentiation is important for advances in the prevention and treatment of CRC.

Pages

  • « first
  • ‹ previous
  • …
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?