ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Seminars in Diagnostic Pathology
Samir K. El-Mofty
PMID: 10.1053/j.semdp.2015.02.022
Am J Otolaryngol. 2014 Jan-Feb;35(1):25-32.
Melkane AE, Mirghani H, Aupérin A, Saulnier P, Lacroix L, Vielh P, Casiraghi O, Griscelli F, Temam S.
PMID: 24112760 | DOI: 10.1016/j.amjoto.2013.08.007.
Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology
2016 Oct 21
Ma Y, Patil N, Gagner JP, Miles BA.
PMID: - | DOI: 10.1016/j.ajoms.2016.09.010
Increased testing for human papillomavirus (HPV) in oropharyngeal carcinomas has broadened the range of HPV-associated malignancies identified at this site. While HPV-related oropharyngeal non-keratinizing squamous cell carcinomas (SCC) are known to have a better prognosis than their non-HPV counterparts, HPV positivity may not alter the aggressive nature of HPV-associated small cell neuroendocrine carcinomas (SCNEC). We report a unique case of a mixed non-keratinizing type HPV-associated tonsillar SCC with SCNEC differentiation, and provide a comparison with the rare reported cases of such mixed carcinomas in the literature. Our patient is only the second such case positive for HPV genotype 18 and the only case in which this HPV-related mixed tonsillar tumor occurred in a patient with small lymphocytic lymphoma/chronic lymphocytic leukemia (SLL/CLL). The case discussion supports the concept that HPV positivity does not confer a better prognosis in such mixed non-keratinizing type SCC with SCNEC. Our report also alerts pathologists to the need to evaluate for the possibility of a coexisting neuroendocrine component when oropharyngeal squamous cell carcinoma (OPSCC) is diagnosed, as its presence will affect the patients’ clinical management and prognosis
Neuron
2017 Jun 29
Xiao L, Priest MF, Nasenbeny J, Lu T, Kozorovitskiy Y.
PMID: 28669546 | DOI: 10.1016/j.neuron.2017.06.003
The release of dopamine (DA) regulates rewarding behavior and motor actions through striatum-targeting efferents from ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). Here, we map and functionally characterize axonal projections from oxytocin neurons in the hypothalamic paraventricular nucleus to midbrain DA regions. Electrophysiological recordings of DA neurons reveal that both the application of oxytocin and optogenetic stimulation of oxytocinergic terminals suffice to increase DA neuron activity in the VTA but downregulate it in SNc. This biased modulation is mediated by oxytocin and vasopressin G-protein-coupled receptors. Oxytocin release directly activates DA neurons and indirectly inhibits them through local GABA neurons, but the relative magnitudes of the two mechanisms differ in VTA and SNc. Oxytocin-modulated DA neurons give rise to canonical striatal projections. Since hypothalamic oxytocinergic projections also target the striatum, oxytocin is poised to bias the balance of DA tone through multiple sites in vertebrate reward circuits.
Nat Neurosci.
2018 Aug 13
Keller JA, Chen J, Simpson S, Wang EHJ, Lilascharoen V, George O, Lim BK, Stowers L.
PMID: 30104734 | DOI: 10.1038/s41593-018-0204-3
Voluntary urination ensures that waste is eliminated when safe and socially appropriate, even without a pressing urge. Uncontrolled urination, or incontinence, is a common problem with few treatment options. Normal urine release requires a small region in the brainstem known as Barrington's nucleus (Bar), but specific neurons that relax the urethral sphincter and enable urine flow are unknown. Here we identify a small subset of Bar neurons that control the urethral sphincter in mice. These excitatory neurons express estrogen receptor 1 (BarESR1), project to sphincter-relaxing interneurons in the spinal cord and are active during natural urination. Optogenetic stimulation of BarESR1 neurons rapidly initiates sphincter bursting and efficient voiding in anesthetized and behaving animals. Conversely, optogenetic and chemogenetic inhibition reveals their necessity in motivated urination behavior. The identification of these cells provides an expanded model for the control of urination and its dysfunction.
Cell metabolism
2023 May 02
Chen, W;Mehlkop, O;Scharn, A;Nolte, H;Klemm, P;Henschke, S;Steuernagel, L;Sotelo-Hitschfeld, T;Kaya, E;Wunderlich, CM;Langer, T;Kononenko, NL;Giavalisco, P;Brüning, JC;
PMID: 37075752 | DOI: 10.1016/j.cmet.2023.03.019
Nature neuroscience
2022 Dec 12
Shin, S;You, IJ;Jeong, M;Bae, Y;Wang, XY;Cawley, ML;Han, A;Lim, BK;
PMID: 36510113 | DOI: 10.1038/s41593-022-01208-0
Cell metabolism
2022 Jun 07
Feng, C;Wang, Y;Zha, X;Cao, H;Huang, S;Cao, D;Zhang, K;Xie, T;Xu, X;Liang, Z;Zhang, Z;
PMID: 35675799 | DOI: 10.1016/j.cmet.2022.05.002
eLife
2021 May 20
Cleary, CM;Milla, BM;Kuo, FS;James, S;Flynn, WF;Robson, P;Mulkey, DK;
PMID: 34013884 | DOI: 10.7554/eLife.60317
Am J Surg Pathol.
2017 May 01
Mills AM, Dirks DC, Poulter MD, Mills SE, Stoler MH.
PMID: 28403015 | DOI: 10.1097/PAS.0000000000000800
Dysregulated expression of oncogenic types of E6 and E7 is necessary for human papillomavirus (HPV)-driven carcinogenesis. An HPV E6/E7 mRNA in situ hybridization (ISH) assay covering 18 common high-risk types ("HR-RISH," aka HR-HPV RNA18 ISH) has not been extensively studied in the anogenital tract or validated on automated technology. We herein compare HR-RISH to DNA polymerase chain reaction (PCR), p16 immunohistochemistry, and a previously available HPV DNA ISH assay in HPV-related anogenital and head and neck (H&N) neoplasia. A total of 102 squamous intraepithelial lesions (16 CIN1, 25 CIN3, 3 AIN1, 12 AIN3, 9 VIN3)/invasive squamous cell carcinomas (17 cervical, 2 anal, 18 H&N) as well as 10 normal and 15 reactive cervix samples were collected. HR-RISH, DNA ISH, and p16 immunohistochemistry were performed on whole formalin-fixed, paraffin-embedded sections. RNA ISH for 6 low-risk HPV types (LR-RISH) was also performed. RNA and DNA ISH assays used automated systems. HR-HPV PCR was performed on morphology-directed formalin-fixed, paraffin-embedded punches. HR-RISH was ≥97% sensitive for PCR+ and p16+ neoplasia, as well as morphologically defined anogenital high grade squamous intraepithelial lesion/invasive squamous cell carcinoma. HR-RISH was also positive in 78% of anogenital low grade squamous intraepithelial lesion, including 81% of CIN1. Furthermore, a subset of PCR-negative/invalid and p16-negative lesions was positive for HR-RISH. Only 1 problematic reactive cervix sample and no normal cervix samples stained. These results demonstrate that HR-RISH is a robust method for the detection of HR-HPV-related neoplasia and provides insight into HPV pathobiology. Performance meets or exceeds that of existing assays in anogenital and H&N lesions and may play a role in resolving diagnostically challenging CIN1 versus reactive cases.
eNeuro
2022 Jul 20
Claypool, SM;Behdin, S;Applebey, SV;Orihuel, J;Ma, Z;Reiner, DJ;
PMID: 35768212 | DOI: 10.1523/ENEURO.0496-21.2022
Am J Surg Pathol.
2017 Nov 03
Mills AM, Coppock JD, Willis BC, Stoler MH.
PMID: 29112014 | DOI: 10.1097/PAS.0000000000000974
Cervical low-grade squamous intraepithelial lesions (LSIL) (aka cervical intraepithelial neoplasia, grade 1 [CIN1]) can present considerable diagnostic challenges and are associated with poor interobserver reproducibility and overdiagnosis. Furthermore, ancillary studies such as p16 immunohistochemistry have shown little utility in resolving the LSIL versus negative/reactive differential. Human papillomavirus (HPV) RNA in situ hybridization (ISH) has shown promise as a diagnostic aid in this setting, but has not been studied in a large case series. We herein investigate high-risk and low-risk HPV RNA ISH in 126 cervical biopsies originally diagnosed as LSIL/CIN1 and compare HPV RNA ISH results to expert-adjudicated morphologic diagnosis to assess whether this assay can help routine cases attain the existing "gold standard" of morphologic consensus diagnosis. We also assess whether this criterion standard can be further improved by integration of HPV RNA ISH results. A consensus diagnosis of intraepithelial lesion (CIN1) was confirmed in 61% of cases, whereas 57% were HPV RNA. HPV-RNA positivity was 84% sensitive and 86% specific for an expert-adjudicated diagnosis of CIN1. Conversely, consensus diagnosis was 90% sensitive and 78% specific for the presence of HPV RNA. Integrating RNA ISH into morphologic review led to further reclassification of 10% of cases, resulting in 95% sensitivity and 98% specificity of HPV RNA ISH for a CIN1 diagnosis and 98% sensitivity and 92% specificity of CIN1 for the presence of HPV RNA. These findings suggest that judicious use of HPV RNA ISH can improve the accuracy of LSIL/CIN1 diagnosis for morphologically ambiguous cases.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com