Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (156)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • (-) Remove HPV E6/E7 filter HPV E6/E7 (78)
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • (-) Remove SLC32A1 filter SLC32A1 (74)
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope 2.0 Assay (30) Apply RNAscope 2.0 Assay filter
  • RNAscope Fluorescent Multiplex Assay (29) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (27) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (12) Apply RNAscope filter
  • RNAscope 2.5 HD Brown Assay (6) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (4) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 VS Assay (4) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Multiplex Fluorescent v2 (3) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope ISH Probe High Risk HPV (2) Apply RNAscope ISH Probe High Risk HPV filter
  • RNAscope Fluorescent Multiplex Reagent kit (1) Apply RNAscope Fluorescent Multiplex Reagent kit filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter
  • TBD (1) Apply TBD filter

Research area

  • Cancer (78) Apply Cancer filter
  • HPV (72) Apply HPV filter
  • Neuroscience (70) Apply Neuroscience filter
  • Infectious Disease (61) Apply Infectious Disease filter
  • Metabolism (4) Apply Metabolism filter
  • Behavior (3) Apply Behavior filter
  • behavioral (3) Apply behavioral filter
  • Addiction (2) Apply Addiction filter
  • Anxiety (2) Apply Anxiety filter
  • Immunotherapy (2) Apply Immunotherapy filter
  • Nueroscience (2) Apply Nueroscience filter
  • Sleep (2) Apply Sleep filter
  • Alzheimer's Disease (1) Apply Alzheimer's Disease filter
  • Cardiovascular Disease (1) Apply Cardiovascular Disease filter
  • Development (1) Apply Development filter
  • Eating (1) Apply Eating filter
  • emotional valence (1) Apply emotional valence filter
  • Endocrinology (1) Apply Endocrinology filter
  • Fear (1) Apply Fear filter
  • Obesity (1) Apply Obesity filter
  • other: Aging (1) Apply other: Aging filter
  • Other: Metabolism (1) Apply Other: Metabolism filter
  • Other: Methods (1) Apply Other: Methods filter
  • Pain (1) Apply Pain filter
  • Paralysis (1) Apply Paralysis filter
  • Protocols (1) Apply Protocols filter
  • PTSD (1) Apply PTSD filter
  • Reward (1) Apply Reward filter
  • Sex Differences (1) Apply Sex Differences filter
  • Spinal Cord injury (1) Apply Spinal Cord injury filter
  • Stress (1) Apply Stress filter
  • Trauma (1) Apply Trauma filter

Category

  • Publications (156) Apply Publications filter
Netrin-1 regulates the balance of synaptic glutamate signaling in the adult ventral tegmental area

eLife

2023 Mar 17

Cline, MM;Juarez, B;Hunker, A;Regiarto, EG;Hariadi, B;Soden, ME;Zweifel, LS;
PMID: 36927614 | DOI: 10.7554/eLife.83760

The axonal guidance cue netrin-1 serves a critical role in neural circuit development by promoting growth cone motility, axonal branching, and synaptogenesis. Within the adult mouse brain, expression of the gene encoding (Ntn1) is highly enriched in the ventral midbrain where it is expressed in both GABAergic and dopaminergic neurons, but its function in these cell types in the adult system remains largely unknown. To address this, we performed viral-mediated, cell-type specific CRISPR-Cas9 mutagenesis of Ntn1 in the ventral tegmental area (VTA) of adult mice. Ntn1 loss-of-function in either cell type resulted in a significant reduction in excitatory postsynaptic connectivity. In dopamine neurons, the reduced excitatory tone had a minimal phenotypic behavioral outcome; however, reduced glutamatergic tone on VTA GABA neurons induced behaviors associated with a hyperdopaminergic phenotype. Simultaneous loss of Ntn1 function in both cell types largely rescued the phenotype observed in the GABA-only mutagenesis. These findings demonstrate an important role for Ntn1 in maintaining excitatory connectivity in the adult midbrain and that a balance in this connectivity within two of the major cell types of the VTA is critical for the proper functioning of the mesolimbic system.
Stress-induced antinociception to noxious heat requires α1A-adrenaline receptors of spinal inhibitory neurons in mice

Molecular brain

2022 Jan 03

Uchiyama, S;Yoshihara, K;Kawanabe, R;Hatada, I;Koga, K;Tsuda, M;
PMID: 34980215 | DOI: 10.1186/s13041-021-00895-3

It is well known that acute exposure to physical stress produces a transient antinociceptive effect (called stress-induced analgesia [SIA]). One proposed mechanism for SIA involves noradrenaline (NA) in the central nervous system. NA has been reported to activate inhibitory neurons in the spinal dorsal horn (SDH), but its in vivo role in SIA remains unknown. In this study, we found that an antinociceptive effect on noxious heat after acute exposure to restraint stress was impaired in mice with a conditional knockout of α1A-adrenaline receptors (α1A-ARs) in inhibitory neurons (Vgat-Cre;Adra1aflox/flox mice). A similar reduction was also observed in mice treated with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine, a selective neurotoxin for NAergic neurons in the locus coeruleus (LC). Furthermore, whole-cell patch-clamp recordings using spinal cord slices revealed that NA-induced increase in the frequency of spontaneous inhibitory postsynaptic currents in the substantia gelatinosa neurons was suppressed by silodosin, an α1A-AR antagonist, and by conditional knockout of α1A-ARs in inhibitory neurons. Moreover, under unstressed conditions, the antinociceptive effects of intrathecal NA and phenylephrine on noxious heat were lost in Vgat-Cre;Adra1aflox/flox mice. Our findings suggest that activation of α1A-ARs in SDH inhibitory neurons, presumably via LC-NAergic neurons, is necessary for SIA to noxious heat.
Lateral mammillary body neurons in mouse brain are disproportionately vulnerable in Alzheimer's disease

Science translational medicine

2023 Apr 19

Huang, WC;Peng, Z;Murdock, MH;Liu, L;Mathys, H;Davila-Velderrain, J;Jiang, X;Chen, M;Ng, AP;Kim, T;Abdurrob, F;Gao, F;Bennett, DA;Kellis, M;Tsai, LH;
PMID: 37075128 | DOI: 10.1126/scitranslmed.abq1019

The neural circuits governing the induction and progression of neurodegeneration and memory impairment in Alzheimer's disease (AD) are incompletely understood. The mammillary body (MB), a subcortical node of the medial limbic circuit, is one of the first brain regions to exhibit amyloid deposition in the 5xFAD mouse model of AD. Amyloid burden in the MB correlates with pathological diagnosis of AD in human postmortem brain tissue. Whether and how MB neuronal circuitry contributes to neurodegeneration and memory deficits in AD are unknown. Using 5xFAD mice and postmortem MB samples from individuals with varying degrees of AD pathology, we identified two neuronal cell types in the MB harboring distinct electrophysiological properties and long-range projections: lateral neurons and medial neurons. lateral MB neurons harbored aberrant hyperactivity and exhibited early neurodegeneration in 5xFAD mice compared with lateral MB neurons in wild-type littermates. Inducing hyperactivity in lateral MB neurons in wild-type mice impaired performance on memory tasks, whereas attenuating aberrant hyperactivity in lateral MB neurons ameliorated memory deficits in 5xFAD mice. Our findings suggest that neurodegeneration may be a result of genetically distinct, projection-specific cellular dysfunction and that dysregulated lateral MB neurons may be causally linked to memory deficits in AD.
Human papillomavirus infection and its biomarkers' expressions in laryngeal basaloid squamous cell carcinoma.

J Int J Clin Exp Pathol (2018)

2018 Nov 15

Cui L, Qu C, Liu H.
| DOI: ISSN:1936-2625/IJCEP0085220

Abstract: Aims: To investigate the frequency and transcriptional activity of HPV and its correlation to p16 and p21 expression in basaloid squamous cell carcinoma (BSCC) of the larynx. Methods: We evaluated tissues from 29 patients with BSCC of the larynx for the expressions of p16 and p21 proteins by immunohistochemistry (IHC) and for HPV E6 and E7 mRNA by RNA in situ hybridization (ISH). The presence of genotype-specific HPV DNA was evaluated using PCR-RDB in formalin-fixed paraffin-embedded tissues. P16 and p21 expression and HPV DNA status were correlated with clinicopathological features. Results: HPV DNA was detected in 8 of 29 (27.59%) patients, with HPV-16 being the predominant genotype. P16 and p21-positivity were observed in 7/29 (24.14%) and 8/29 (27.59%) patients, respectively. HPV was not correlated with p16 expression (P > 0.05). However, p21 expression was significantly higher in HPV-positive tumors than in HPV-negative tumors (P < 0.05). No cases exhibited transcriptionally active HPV in our series. Conclusion: Our findings suggest that a small fraction of BSCC of the larynx is HPV DNA-positive in this Chinese population, p21 expression was significantly higher in HPV-positive tumors, and no cases were HPV transcriptionally active in this small cohort. Further research of HPV and its role in BSCC of the larynx are warranted.
Blockade of dopamine D3 receptor in ventral tegmental area attenuating contextual fear memory

Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie

2022 Dec 31

Ding, X;Yang, M;Wu, N;Li, J;Song, R;
PMID: 36592493 | DOI: 10.1016/j.biopha.2022.114179

The abnormal fear memory will lead to the onset of stress disorders, such as post-traumatic stress disorder (PTSD) and so on. Therefore, the intervention in the formation of abnormal fear memory will provide a new strategy for the prevention and treatment of PTSD. In our previous studies, we found that blockade of dopamine D3 receptor (DRD3) with highly selective antagonist YQA14 or knockout of DRD3 was able to attenuate the expression or retrieval of fear memory in PTSD animal models. However, the neurobiological mechanism of regulation of DRD3 in fear is unclear. In the present research, we clarified that DRD3 was expressed in the dopaminergic (DAergic) neurons in the ventral tegmental area (VTA). Then, we identified that microinjection of YQA14 (1 μg/0.2 μl/side) in VTA before the aversive stimuli in the training session or during days subsequent to the shock significantly meliorated the freezing behaviors in the inescapable electric foot-shock model. At last, using fiber photometry system, we found that microinjection of YQA14 in VTA promoted the dopamine neurotransmitter release in the basolateral amygdala (BLA), and pre-training YQA14 infusion in VTA lowered the increase of dopamine (DA) in BLA induced by shock during the training session or by context during the retrieval session. All above the results demonstrated that YQA14 attenuated the fear learning through the blockade of DRD3 in VTA decreasing the excitability of the projection to BLA. This study may provide new mechanisms and potential intervention targets for stress disorders with abnormal fear memory.
Elevated prefrontal dopamine interferes with the stress-buffering properties of behavioral control in female rats

Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology

2022 Sep 08

McNulty, CJ;Fallon, IP;Amat, J;Sanchez, RJ;Leslie, NR;Root, DH;Maier, SF;Baratta, MV;
PMID: 36076018 | DOI: 10.1038/s41386-022-01443-w

Stress-linked disorders are more prevalent in women than in men and differ in their clinical presentation. Thus, investigating sex differences in factors that promote susceptibility or resilience to stress outcomes, and the circuit elements that mediate their effects, is important. In male rats, instrumental control over stressors engages a corticostriatal system involving the prelimbic cortex (PL) and dorsomedial striatum (DMS) that prevent many of the sequelae of stress exposure. Interestingly, control does not buffer against stress outcomes in females, and here, we provide evidence that the instrumental controlling response in females is supported instead by the dorsolateral striatum (DLS). Additionally, we used in vivo microdialysis, fluorescent in situ hybridization, and receptor subtype pharmacology to examine the contribution of prefrontal dopamine (DA) to the differential impact of behavioral control. Although both sexes preferentially expressed D1 receptor mRNA in PL GABAergic neurons, there were robust sex differences in the dynamic properties of prefrontal DA during controllable stress. Behavioral control potently attenuated stress-induced DA efflux in males, but not females, who showed a sustained DA increase throughout the entire stress session. Importantly, PL D1 receptor blockade (SCH 23390) shifted the proportion of striatal activity from the DLS to the DMS in females and produced the protective effects of behavioral control. These findings suggest a sex-selective mechanism in which elevated DA in the PL biases instrumental responding towards prefrontal-independent striatal circuitry, thereby eliminating the protective impact of coping with stress.
Prognostic stratification of HPV associated oropharyngeal cancer based on CD103+ immune cell abundance in patients treated on TROG 12.01 and De-ESCALaTE randomised trials

Annals of oncology : official journal of the European Society for Medical Oncology

2022 May 04

Rischin, D;Mehanna, H;Young, RJ;Bressel, M;Dunn, J;Corry, J;Soni, P;Fulton-Lieuw, T;Iqbal, G;Kenny, L;Porceddu, S;Wratten, C;Robinson, M;Solomon, BJ;Trans-Tasman Radiation Oncology Group and the De-ESCALaTE HPV Trial Group, ;
PMID: 35525376 | DOI: 10.1016/j.annonc.2022.04.074

High CD103+ intratumoral immune cell (ITIC) abundance is associated with better prognosis in unselected patients with human papilloma virus associated oropharyngeal squamous cell carcinoma(HPV-associated OPSCC) treated with cisplatin and radiotherapy(CIS/RT). Substituting cetuximab(CETUX) for CIS with RT in HPV-associated OPSCC resulted in inferior efficacy. Our aim was to determine if quantification of ITIC CD103 could be used to identify a population of HPV-associated OPSCC with superior prognosis.We pooled data from the TROG 12.01 and De-ESCALaTE randomised trials that compared CETUX/70GyRT with CIS/70GyRT in low risk HPV-associated OPSCC: AJCC 7th Stage III (excluding T1-2N1) or stage IV (excluding N2b-c if smoking history >10 pack years and/or distant metastases), including all patients with available tumor samples. The primary endpoint was failure-free survival (FFS) in patients receiving CETUX/ RT comparing CD103+ ITIC high (>30%) versus low (<30%). High/low CD103 were compared using Cox regression adjusting for age, stage and trial.Tumor samples were available in 159/182 patients on TROG 12.01 and 145/334 on De-ESCALaTE. CD103+ ITIC abundance was high in 27% of patients. The median follow-up was 3.2 years. The 3-year FFS in patients treated with CETUX/RT were 93% (95% CI: 79-98%) in high CD103 and 74% (95% CI: 63-81%) in low CD103, adjusted HR 0.22 (95% CI: 0.12-0.41); p<0.001. The 3-year overall survival in patients treated with CETUX/RT was 100% in high CD103 and 86% (95% CI: 76-92%) in low CD103, p<0.001. In patients treated with CIS/RT there was no significant difference in FFS.CD103+ ITIC expression separates CETUX/RT treated low risk HPV-associated OPSCC into excellent and poor prognosis subgroups. The high CD103 population is a rational target for de-intensification trials.
Involvement of Scratch2 in GalR1-mediated depression-like behaviors in the rat ventral periaqueductal gray

Proceedings of the National Academy of Sciences of the United States of America

2021 Jun 15

Yang, Y;Li, Y;Liu, B;Li, C;Liu, Z;Deng, J;Luo, H;Li, X;Wu, J;Li, H;Wang, CY;Zhao, M;Wu, H;Lallemend, F;Svenningsson, P;Hökfelt, TGM;Xu, ZD;
PMID: 34108238 | DOI: 10.1073/pnas.1922586118

Galanin receptor1 (GalR1) transcript levels are elevated in the rat ventral periaqueductal gray (vPAG) after chronic mild stress (CMS) and are related to depression-like behavior. To explore the mechanisms underlying the elevated GalR1 expression, we carried out molecular biological experiments in vitro and in animal behavioral experiments in vivo. It was found that a restricted upstream region of the GalR1 gene, from -250 to -220, harbors an E-box and plays a negative role in the GalR1 promoter activity. The transcription factor Scratch2 bound to the E-box to down-regulate GalR1 promoter activity and lower expression levels of the GalR1 gene. The expression of Scratch2 was significantly decreased in the vPAG of CMS rats. Importantly, local knockdown of Scratch2 in the vPAG caused elevated expression of GalR1 in the same region, as well as depression-like behaviors. RNAscope analysis revealed that GalR1 mRNA is expressed together with Scratch2 in both GABA and glutamate neurons. Taking these data together, our study further supports the involvement of GalR1 in mood control and suggests a role for Scratch2 as a regulator of depression-like behavior by repressing the GalR1 gene in the vPAG.
"Transcriptionally Active High-Risk Human Papillomavirus is Not a Common Etiologic Agent in the Malignant Transformation of Inverted Schneiderian Papillomas. "

Head Neck Pathol.

2017 Feb 08

Rooper LM, Bishop JA, Westra WH.
PMID: 28181187 | DOI: 10.1007/s12105-017-0779-0

The role of human papillomavirus (HPV) as an etiologic and transformational agent in inverted Schneiderian papilloma (ISP) is unclear. Indeed, reported detection rates of HPV in ISPs range from 0 to 100%. The true incidence has been confounded by a tendency to conflate high- and low-risk HPV types and by the inability to discern biologically relevant from irrelevant HPV infections. The recent development of RNA in situ hybridization for high-risk HPV E6/E7 mRNA now allows the direct visualization of transcriptionally active high-risk HPV in ISP, providing an opportunity to more definitively assess its role in the development and progression of ISPs. We performed p16 immunohistochemistry and high-risk HPV RNA in situ hybridization on 30 benign ISPs, 7 ISPs with dysplasia, 16 ISPs with carcinomatous transformation, and 7 non-keratinizing squamous cell carcinomas (SCCs) with inverted growth that were unassociated with ISP. Transcriptionally active HPV was not detected in any of the 52 ISPs including those that had undergone carcinomatous transformation, but it was detected in two of seven (29%) non-keratinizing SCCs that showed inverted growth. There was a strong correlation between high-risk HPV RNA in situ hybridization and p16 immunohistochemistry (97%; p < 0.01). These results indicate that transcriptionally active high-risk HPV does not play a common role in either the development of ISP or in its transformation into carcinoma.

Novel In Situ Hybridization Assay for Chromogenic Single-Molecule Detection of Human Papillomavirus E6/E7 mRNA

Microbiology spectrum

2023 Feb 21

Rao, X;Zheng, L;Wei, K;Li, M;Jiang, M;Qiu, J;Zhou, Y;Ke, R;Lin, C;
PMID: 36809088 | DOI: 10.1128/spectrum.03896-22

RNA plays a vital role in the physiological and pathological processes of cells and tissues. However, RNA in situ hybridization applications in clinical diagnostics are still limited to a few examples. In this study, we developed a novel in situ hybridization assay for human papillomavirus (HPV) E6/E7 mRNA by taking advantage of specific padlock probing and rolling circle amplification, combined with chromogenic readout. We designed padlock probes for 14 types of high-risk HPV and demonstrated that E6/E7 mRNA could be visualized in situ as discrete dot-like signals using bright-field microscopy. Overall, the results are consistent with the clinical diagnostics lab's hematoxylin and eosin (H&E) staining and p16 immunohistochemistry test results. Our work thus shows the potential applications of RNA in situ hybridization for clinical diagnostics using chromogenic single-molecule detection, offering an alternative technical option to the current commercially available kit based on branched DNA technology. IMPORTANCE In situ detection of viral mRNA expression in tissue samples is of great value for pathological diagnosis to access viral infection status. Unfortunately, conventional RNA in situ hybridization assays lack sensitivity and specificity for clinical diagnostic purposes. Currently, the commercially available branched DNA technology-based single-molecule RNA in situ detection method offers satisfactory results. Here, we present our padlock probe- and rolling circle amplification-based RNA in situ hybridization assay for detecting HPV E6/E7 mRNA expression in formalin-fixed paraffin-embedded tissue sections, providing an alternative yet robust method for viral RNA in situ visualization that is also applicable to different types of diseases.
The presence of high-risk human papillomavirus (HPV) E6/E7 mRNA transcripts in a subset of sinonasal carcinomas is evidence of involvement of HPV in its etiopathogenesis.

Virchows Arch. 2015 Jul 31.

Laco J, Sieglová K, Vošmiková H, Dundr P, Němejcová K, Michálek J, Čelakovský P, Chrobok V, Mottl R, Mottlová A, Tuček L, Slezák R, Chmelařová M, Sirák I, Vošmik M, Ryška A.
PMID: 26229021

The aim of the study was to investigate prevalence of high-risk human papillomavirus (HR-HPV) infection in sinonasal carcinomas by immunohistochemistry, in situ hybridization, and polymerase chain reaction, detecting p16INK4a protein (p16) expression and presence of both HPV DNA and HPV E6/E7 messenger RNA (mRNA). The study comprised 47 males and 26 females, aged 23-83 years (median 62 years), mostly (67 %) with a squamous cell carcinoma (SCC). Of the tumors, 53 % arose in the nasal cavity, 42 % in the maxillary sinus, and 5 % in the ethmoid complex. The follow-up period ranged 1-241 months (median 19 months). HPV16, HPV18, or HPV35 were detected in 18/73 (25 %) tumors, 17 SCCs, and 1 small cell neuroendocrine carcinoma. There was a strong correlation between results of HPV detection methods and p16 expression (p < 0.005). HPV-positive SCCs occurred more frequently in smokers (p = 0.04) and were more frequently p16-positive (p < 0.0001) and nonkeratinizing (p = 0.02), the latter occurring more commonly in nasal cavity (p = 0.025). Median survival for HPV-positive SCC patients was 30 months, while for HPV-negative SCC patients was 14 months (p = 0.23). In summary, we confirm that HR-HPV is actively involved in the etiopathogenesis of a significant subset of sinonasal SCCs. p16 may be used as a reliable surrogate marker for determination of HPV status also in sinonasal SCCs. Although we observed a trend toward better overall survival in HPV-positive SCCs, the prognostic impact of HPV status in sinonasal carcinomas needs to be elucidated by further studies.
Detection of Human Papillomavirus in Non-Small Cell Carcinoma of the Lung

Human Pathology (2015)

Chang SY, Keeney M, Law M, Donovan J, Aubry MC, Garcia J.

High-risk human papillomavirus (hrHPV) is an etiologic agent in squamous cell carcinoma (SqCC) arising in the oropharynx and cervix, and a proven prognostic factor in oropharyngeal SqCC. Many studies have found HPV in non-small cell lung carcinoma (NSCLC). Recent studies advocate the detection of mRNA transcripts of E6/E7 as more reliable evidence of transcriptively active HPV in tumor cells. The clinical significance of finding HPV remains unclear in NSCLC. This study sought to determine the prevalence of biologically active HPV infection in NSCLC comparing different methodologies. Surgical pathology material from resected primary lung adenocarcinoma (ADC; n = 100) and SqCC (n = 96) were retrieved to construct tissue microarrays. In-situ hybridization (ISH) for hrHPV DNA (DNA-ISH), hrHPV E6/E7 RNA (RNA-ISH), and p16 immunohistochemistry (IHC) were performed. Cases of oropharyngeal SqCC with known HPV infection were used as positive controls. Expression of p16 was scored as positive if at least 70% of tumor cells showed diffuse and strong nuclear and cytoplasmic staining. Punctate nuclear hybridization signals by DNA-ISH in the malignant cells defined an HPV-positive carcinoma. Of the 196 patients (range 33-87 years; 108 men), p16 was positive in 19 ADC and 9 SqCC, but HPV DNA-ISH and RNA-ISH were negative in all cases. Our study did not detect HPV infection by DNA-ISH or RNA-ISH in any cases of primary NSCLC despite positive p16 expression in a portion of ADC and SqCC. p16 should therefore not be used as a surrogate marker for HPV infection in NSCLC.

Pages

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?