Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (156)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • (-) Remove HPV E6/E7 filter HPV E6/E7 (78)
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • (-) Remove SLC32A1 filter SLC32A1 (74)
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope 2.0 Assay (30) Apply RNAscope 2.0 Assay filter
  • RNAscope Fluorescent Multiplex Assay (29) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (27) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (12) Apply RNAscope filter
  • RNAscope 2.5 HD Brown Assay (6) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (4) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 VS Assay (4) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Multiplex Fluorescent v2 (3) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope ISH Probe High Risk HPV (2) Apply RNAscope ISH Probe High Risk HPV filter
  • RNAscope Fluorescent Multiplex Reagent kit (1) Apply RNAscope Fluorescent Multiplex Reagent kit filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter
  • TBD (1) Apply TBD filter

Research area

  • Cancer (78) Apply Cancer filter
  • HPV (72) Apply HPV filter
  • Neuroscience (70) Apply Neuroscience filter
  • Infectious Disease (61) Apply Infectious Disease filter
  • Metabolism (4) Apply Metabolism filter
  • Behavior (3) Apply Behavior filter
  • behavioral (3) Apply behavioral filter
  • Addiction (2) Apply Addiction filter
  • Anxiety (2) Apply Anxiety filter
  • Immunotherapy (2) Apply Immunotherapy filter
  • Nueroscience (2) Apply Nueroscience filter
  • Sleep (2) Apply Sleep filter
  • Alzheimer's Disease (1) Apply Alzheimer's Disease filter
  • Cardiovascular Disease (1) Apply Cardiovascular Disease filter
  • Development (1) Apply Development filter
  • Eating (1) Apply Eating filter
  • emotional valence (1) Apply emotional valence filter
  • Endocrinology (1) Apply Endocrinology filter
  • Fear (1) Apply Fear filter
  • Obesity (1) Apply Obesity filter
  • other: Aging (1) Apply other: Aging filter
  • Other: Metabolism (1) Apply Other: Metabolism filter
  • Other: Methods (1) Apply Other: Methods filter
  • Pain (1) Apply Pain filter
  • Paralysis (1) Apply Paralysis filter
  • Protocols (1) Apply Protocols filter
  • PTSD (1) Apply PTSD filter
  • Reward (1) Apply Reward filter
  • Sex Differences (1) Apply Sex Differences filter
  • Spinal Cord injury (1) Apply Spinal Cord injury filter
  • Stress (1) Apply Stress filter
  • Trauma (1) Apply Trauma filter

Category

  • Publications (156) Apply Publications filter
Enhancing neuronal chloride extrusion rescues?2/?3 GABAA-mediated analgesia in neuropathic pain

Nat Commun

2020 Feb 13

Lorenzo LE, Godin AG, Ferrini F, Bachand K, Plasencia-Fernandez I, Labrecque S, Girard A, Boudreau D, Kianicka I, Gagnon M, Doyon N, Ribeiro-da-Silva A, De Koninck Y
PMID: 32054836 | DOI: 10.1038/s41467-019-14154-6

Spinal disinhibition has been hypothesized to underlie pain hypersensitivity in neuropathic pain. Apparently contradictory mechanisms have been reported, raising questions on the best target to produce analgesia. Here, we show that nerve injury is associated with a reduction in the number of inhibitory synapses in the spinal dorsal horn. Paradoxically, this is accompanied by a BDNF-TrkB-mediated upregulation of synaptic GABAARs and by an ?1-to-?2GABAAR subunit switch, providing a mechanistic rationale for the analgesic action of the ?2,3GABAAR benzodiazepine-site ligand L838,417 after nerve injury. Yet, we demonstrate that impaired Cl- extrusion underlies the failure of L838,417 to induce analgesia at high doses due to a resulting collapse in Cl- gradient, dramatically limiting the benzodiazepine therapeutic window. In turn, enhancing KCC2 activity not only potentiated L838,417-induced analgesia, it rescued its analgesic potential at high doses, revealing a novel strategy for analgesia in pathological pain, by combined targeting of the appropriate GABAAR-subtypes and restoring Cl- homeostasis
Lateral septum as a melanocortin downstream site in obesity development

Cell reports

2023 May 11

Xu, Y;Jiang, Z;Li, H;Cai, J;Jiang, Y;Otiz-Guzman, J;Xu, Y;Arenkiel, BR;Tong, Q;
PMID: 37171957 | DOI: 10.1016/j.celrep.2023.112502

The melanocortin pathway is well established to be critical for body-weight regulation in both rodents and humans. Despite extensive studies focusing on this pathway, the downstream brain sites that mediate its action are not clear. Here, we found that, among the known paraventricular hypothalamic (PVH) neuron groups, those expressing melanocortin receptors 4 (PVHMc4R) preferably project to the ventral part of the lateral septum (LSv), a brain region known to be involved in emotional behaviors. Photostimulation of PVHMc4R neuron terminals in the LSv reduces feeding and causes aversion, whereas deletion of Mc4Rs or disruption of glutamate release from LSv-projecting PVH neurons causes obesity. In addition, disruption of AMPA receptor function in PVH-projected LSv neurons causes obesity. Importantly, chronic inhibition of PVH- or PVHMc4R-projected LSv neurons causes obesity associated with reduced energy expenditure. Thus, the LSv functions as an important node in mediating melanocortin action on body-weight regulation.
Examining ventral subiculum and basolateral amygdala projections to the nucleus accumbens shell: Differential expression of VGLuT1, VGLuT2 and VGaT in the rat

Neuroscience letters

2022 Aug 26

Jin, S;Maddern, XJ;Campbell, EJ;Lawrence, AJ;
PMID: 36038028 | DOI: 10.1016/j.neulet.2022.136858

Projections to the striatum are well-identified. For example, in the ventral striatum, two major inputs to the medial nucleus accumbens shell include the ventral subiculum and basolateral amygdala. However, the chemical phenotype(s) of these projection neurons remain unclear. In this study, we examined amygdalostriatal and corticostriatal connectivity in rats using injections of the retrograde tracer cholera toxin b into the nucleus accumbens shell. To determine the neurotransmitter identity of projection neurons, we combined retrograde tracing with RNAscope in-situ hybridization, using mRNA probes against vesicular transporters associated with glutamatergic (VGluT1 - Slc17a7, VGluT2 - Slc17a6) or GABAergic (VGaT - Slc32a1) neurotransmission. Confocal imaging was used to examine vesicular transporter mRNA expression in the ventral subiculum and basolateral amygdala inputs to the nucleus accumbens shell. Both projections contained mostly VGluT1-expressing neurons. Interestingly, almost a quarter of ventral subiculum to nucleus accumbens shell projections co-expressed VGluT1 and VGluT2 compared to a relatively small number (∼3%) that were co-expressed in basolateral amygdala to nucleus accumbens shell afferents. However, almost a quarter of basolateral amygdala to nucleus accumbens shell projections were VGaT-positive. These findings highlight the diverse proportions of glutamatergic and GABAergic afferents in two major projections to the nucleus accumbens shell and raise important questions for functional studies.
Slc12a8 in the lateral hypothalamus maintains energy metabolism and skeletal muscle functions during aging

Cell reports

2022 Jul 26

Ito, N;Takatsu, A;Ito, H;Koike, Y;Yoshioka, K;Kamei, Y;Imai, SI;
PMID: 35905718 | DOI: 10.1016/j.celrep.2022.111131

Sarcopenia and frailty are urgent socio-economic problems worldwide. Here we demonstrate a functional connection between the lateral hypothalamus (LH) and skeletal muscle through Slc12a8, a recently identified nicotinamide mononucleotide transporter, and its relationship to sarcopenia and frailty. Slc12a8-expressing cells are mainly localized in the LH. LH-specific knockdown of Slc12a8 in young mice decreases activity-dependent energy and carbohydrate expenditure and skeletal muscle functions, including muscle mass, muscle force, intramuscular glycolysis, and protein synthesis. LH-specific Slc12a8 knockdown also decreases sympathetic nerve signals at neuromuscular junctions and β2-adrenergic receptors in skeletal muscle, indicating the importance of the LH-sympathetic nerve-β2-adrenergic receptor axis. LH-specific overexpression of Slc12a8 in aged mice significantly ameliorates age-associated decreases in energy expenditure and skeletal muscle functions. Our results highlight an important role of Slc12a8 in the LH for regulation of whole-body metabolism and skeletal muscle functions and provide insights into the pathogenesis of sarcopenia and frailty during aging.
Ciliated HPV-related Carcinoma: A Well-differentiated Form of Head and Neck Carcinoma That Can Be Mistaken for a Benign Cyst.

Am J Surg Pathol.

2015 Oct 17

Bishop JA, Westra WH.
PMID: 26457358 | DOI: 10.1097/PAS.0000000000000521.

Although human papillomavirus (HPV)-related oropharyngeal carcinomas (HPV-OPCs) are generally regarded as "poorly differentiated," they actually maintain a close resemblance to the lymphoepithelium of the tonsillar crypts from which they arise: they are basaloid, exhibit minimal keratinization, and are often permeated by lymphocytes. In rare cases, the presence of cilia in a primary HPV-OPC and their persistence in lymph node metastasis can confound the distinction between a benign and malignant process. Three cases of ciliated HPV-OPCs were identified from the archives of The Johns Hopkins Head and Neck Pathology consultation service. HPV status was determined using p16 immunohistochemistry and high-risk HPV in situ hybridization. All 3 patients presented with a cystic lymph node metastasis without a known primary carcinoma. One metastasis was originally diagnosed as a branchial cleft cyst only to regionally recur 7 years later. In 2 cases, a primary HPV-OPC was found in the tonsil. The carcinomas exhibited both nonkeratinizing squamous epithelium and cystic/microcystic spaces lined by ciliated columnar cells. Both the squamous and ciliated cells were HPV positive. This report draws attention to a novel variant of HPV-related head and neck cancer that exhibits ciliated columnar cells. This variant challenges prevailing notions that: (1) HPV-OPCs are uniformly poorly differentiated cancers; (2) cilia are an infallible feature of benignancy; and (3) presence of cilia is a reliable criterion for establishing branchial cleft origin when dealing with cystic lesions of the lateral neck.

Distinct Ventral Pallidal Neural Populations Mediate Separate Symptoms of Depression

Cell.

2017 Jul 13

Knowland D, Lilascharoen V, Pacia CP, Shin S, Wang EH, Lim BK.
PMID: 28689640 | DOI: 10.1016/j.cell.2017.06.015

Major depressive disorder (MDD) patients display a common but often variable set of symptoms making successful, sustained treatment difficult to achieve. Separate depressive symptoms may be encoded by differential changes in distinct circuits in the brain, yet how discrete circuits underlie behavioral subsets of depression and how they adapt in response to stress has not been addressed. We identify two discrete circuits of parvalbumin-positive (PV) neurons in the ventral pallidum (VP) projecting to either the lateral habenula or ventral tegmental area contributing to depression. We find that these populations undergo different electrophysiological adaptations in response to social defeat stress, which are normalized by antidepressant treatment. Furthermore, manipulation of each population mediates either social withdrawal or behavioral despair, but not both. We propose that distinct components of the VP PV circuit can subserve related, yet separate depressive-like phenotypes in mice, which could ultimately provide a platform for symptom-specific treatments of depression.

Immunotherapy in Penile Squamous Cell Carcinoma: Present or Future? Multi-Target Analysis of Programmed Cell Death Ligand 1 Expression and Microsatellite Instability

Frontiers in medicine

2022 May 03

Montella, M;Sabetta, R;Ronchi, A;De Sio, M;Arcaniolo, D;De Vita, F;Tirino, G;Caputo, A;D'Antonio, A;Fiorentino, F;Facchini, G;Lauro, GD;Perdonà, S;Ventriglia, J;Aquino, G;Feroce, F;Borges Dos Reis, R;Neder, L;Brunelli, M;Franco, R;Zito Marino, F;
PMID: 35592855 | DOI: 10.3389/fmed.2022.874213

Penile cancer (PC) is an extremely rare malignancy, and the patients at advanced stages have currently limited treatment options with disappointing results. Immune checkpoint inhibitors anti-programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) are currently changing the treatment of several tumors. Furthermore, the microsatellite instability (MSI) and the deficient mismatch repair system (dMMR) proteins represent predictive biomarkers for response to immune checkpoint therapy. Until present, few data have been reported related to PD-L1 expression and MSI in PC. The main aim of our study was the evaluation of PD-L1 expression in tumor cells (TCs) and tumor-infiltrating lymphocytes (TILs) in immune cells and the analysis of dMMR/MSI status in a large series of PCs.A series of 72 PC, including 65 usual squamous cell carcinoma (USCC), 1 verrucous, 4 basaloid, 1 warty, and 1 mixed (warty-basaloid), was collected. Immunohistochemistry (IHC) was performed to assess PD-L1 expression using two different anti-PD-L1 antibodies (clone SP263 and SP142 Ventana) and MMR proteins expression using anti-MLH1, anti-PMS2, anti-MSH2, and anti-MSH6 antibodies. PCR analysis was performed for the detection of MSI status.Of the 72 PC cases analyzed by IHC, 45 (62.5%) cases were TC positive and 57 (79%) cases were combined positive score (CPS) using PDL1 SP263. In our cohort, TILs were present in 62 out of 72 cases (86.1%), 47 (75.8%) out of 62 cases showed positivity to PDL1 clone SP142. In our series, 59 cases (82%) had pMMR, 12 cases (16.7%) had lo-paMMR, and only 1 case (1.3%) had MMR. PCR results showed that only one case lo-paMMR was MSI-H, and the case dMMR by IHC not confirmed MSI status.Our findings showed that PD-L1 expression and MSI status represent frequent biological events in this tumor suggesting a rationale for a new frontier in the treatment of patients with PC based on the immune checkpoint inhibitors.
Human papillomavirus (HPV) infection in a case-control study of oral squamous cell carcinoma and its increasing trend in northeastern Thailand

Journal of Medical Virology

2016 Dec 09

Phusingha P, Ekalaksananan T, Vatanasapt P, Loyha K, Promthet S, Kongyingyoes B, Patarapadungkit N, Chuerduangphui J, Pientong C.
PMID: 27935063 | DOI: 10.1002/jmv.24744

Human papillomavirus (HPV) is an independent risk factor for development of oral squamous cell carcinoma (OSCC). This study aimed to investigate the role of HPV infection and the trend in percentage of HPV-associated OSCC over a five-year period in northeastern Thailand. In this case-control study, 91 exfoliated oral cell samples and 80 lesion cell samples from OSCC cases and exfoliated oral cells from 100 age/gender-matched controls were collected. HPV infection was investigated by PCR using GP5+/GP6+ primers followed by HPV genotyping using reverse line blot hybridization. Quantitative RT-PCR was used to evaluate HPV oncogene transcription. Temporal trends of HPVinfection were evaluated in archived formalin-fixed paraffin-embedded (FFPE) OSCC tissues using in situ hybridization. HPV DNA was found in 17.5% (14/80) of lesion samples from OSCC cases and 29.7% (27/91) of exfoliated oral cell samples from the same cases. These values were significantly higher than in exfoliated oral cell samples from controls (13%, 13/100). HPV-16 was the genotype most frequently found in OSCC cases (92.8%, 13/14 infected cases). Interestingly, HPV oncogene mRNA expression was detected and correlated with OSCC cases (P < 0.005). Of 146 archived FFPE OSCC samples, 82 (56.2%) were positive for high-risk HPV DNA and 64 (43.8%) cases were positive for HPV E6/E7 mRNA expression. There was a trend of increasing percentage of HPV-associated OSCC from 2005 to 2010. This was especially so for females with well-differentiated tumors in specific tongue sub-sites. We suggest that HPV infection plays an important role in oral carcinogenesis in northeastern Thailand.

Identification of transcriptionally active HPV infection in formalin-fixed, paraffin-embedded biopsies of oropharyngeal carcinoma

Human Pathology

Morbini P , Alberizzi P, Tinelli C, Paglino C, Bertino G, Comoli P, Pedrazzoli P, Benazzo M.
PMID: 10.1016/j.humpath.2014.12.014

Human papillomavirus (HPV) oncogenic activity is the result of viral oncogene E6 and E7 expression in infected cells. Oncogene expression analysis is however not part of the routine diagnostic evaluation of HPV-associated oropharyngeal squamous cell carcinoma (OPSCC) since it requires fresh tumor tissue. We compared the diagnostic accuracy of several methods commonly employed for HPV characterization in OPSCC with the results of the newly available HPV E6/E7 mRNA in situ hybridization (ISH) on formalin-fixed, paraffin-embedded biopsy samples, in order to establish if the latter should be introduced in the diagnostic routine to increase accuracy when fresh tissue is not available. p16 immunostain, DNA ISH for high risk (HR) HPV genotypes, SPF LiPA amplification and genotyping, and HPV16 E6 amplification were performed on 41 consecutive OPSCC samples. Twenty (48,7%) cases were positive by mRNA ISH; sensitivity and specificity were 100% and 90% for p16, 90% and 100% for DNA ISH, 70% and 76% for SPF10 LiPA, 90% and 76% for E6 amplification. A diagnostic algorithm considering p16 immunostain as first step followed by either HR HPV DNA ISH or HPV16 E6 amplification in p16-positive cases correctly characterized 90% of mRNA-positive and all mRNA-negative cases; combining the 3 tests correctly identified all cases. While no stand-alone test was sufficiently accurate for classifying HPV-associated OPSCC, the high sensitivity and specificity of the established combination of p16 immunostain, DNA ISH and HPV16 DNA amplification suggests that the introduction of labour- and cost-intensive mRNA ISH, is not necessary in the diagnostic routine of oropharyngeal tumors.
HPV E6/E7 RNA In Situ Hybridization Signal Patterns as Biomarkers of Three-Tier Cervical Intraepithelial Neoplasia Grade

PLoS One. 2014 Mar 13;9(3):e91142

Evans MF, Peng Z, Clark KM, Adamson CSC, Ma XJ, Wu X, Wang H, Luo Y, Cooper K
PMID: 24625757 | DOI: 10.1371/journal.pone.0091142.eCollection2014.

Cervical lesion grading is critical for effective patient management. A three-tier classification (cervical intraepithelial neoplasia [CIN] grade 1, 2 or 3) based on H&E slide review is widely used. However, for reasons of considerable inter-observer variation in CIN grade assignment and for want of a biomarker validating a three-fold stratification, CAP-ASCCP LAST consensus guidelines recommend a two-tier system: low- or high-grade squamous intraepithelial lesions (LSIL or HSIL). In this study, high-risk HPV E6/E7 and p16 mRNA expression patterns in eighty-six CIN lesions were investigated by RNAscope chromogenic in situ hybridization (CISH). Specimens were also screened by immunohistochemistry for p16INK4a (clone E6H4), and by tyramide-based CISH for HPV DNA. HPV genotyping was performed by GP5+/6+ PCR combined with cycle-sequencing. Abundant high-risk HPV RNA CISH signals were detected in 26/32 (81.3%) CIN 1, 22/22 (100%) CIN 2 and in 32/32 (100%) CIN 3 lesions. CIN 1 staining patterns were typified (67.7% specimens) by abundant diffusely staining nuclei in the upper epithelial layers; CIN 2 lesions mostly (66.7%) showed a combination of superficial diffuse-stained nuclei and multiple dot-like nuclear and cytoplasmic signals throughout the epithelium; CIN 3 lesions were characterized (87.5%) by multiple dot-like nuclear and cytoplasmic signals throughout the epithelial thickness and absence/scarcity of diffusely staining nuclei (trend across CIN grades: P<0.0001). These data are consistent with productive phase HPV infections exemplifying CIN 1, transformative phase infections CIN 3, whereas CIN 2 shows both productive and transformative phase elements. Three-tier data correlation was not found for the other assays examined. The dual discernment of diffuse and/or dot-like signals together with the assay’s high sensitivity for HPV support the use of HPV E6/E7 RNA CISH as an adjunct test for deciding lesion grade when CIN 2 grading may be beneficial (e.g. among young women) or when ‘LSIL vs. HSIL’ assignment is equivocal.
p16 Immunohistochemistry in Oropharyngeal Squamous Cell Carcinoma Using the E6H4 Antibody Clone: A Technical Method Study for Optimal Dilution.

Head Neck Pathol.

2017 Nov 30

Lewis JS Jr, Shelton J, Kuhs KL, K Smith D.
PMID: 29190003 | DOI: 10.1007/s12105-017-0871-5

Routine testing for p16 immunohistochemistry (with selective HPV-specific test use) has been recommended for clinical practice in oropharyngeal squamous cell carcinoma (OPSCC). Data suggests that the E6H4 clone performs best for this purpose, yet no studies have evaluated the optimal antibody concentration for OPSCC testing. We evaluated three concentrations (undiluted, 1:5, and 1:10) of the primary antibody solution for E6H4 using tissue microarrays from a cohort of 199 OPSCC patients with a > 70% staining cutoff for positivity. Concordance was evaluated using percent agreement and Cohen's kappa. The concentrations were evaluated for sensitivity and specificity using high risk HPV RNA in situ hybridization (RNA-ISH) and also correlated with Kaplan-Meier overall survival analysis. Inter-rater agreement was very high between p16 results at each concentration and also with RNA in situ hybridization (p < 0.0001 for all). Agreement between p16 undiluted and 1:5 dilution (agreement 98.2%; Kappa 0.943; p < 0.0001) was very high and between p16 undiluted and 1:10 dilution (agreement 79.2%; Kappa 0.512; p < 0.0001) much lower. Intensity of the staining did decrease with the 1:5 and 1:10 dilutions compared to undiluted, but not in a manner that obviously would change test interpretation or performance. Results suggest that the E6H4 antibody performs well at dilutions of up to 1:5 fold with a minor decrease in staining intensity, minimum loss of sensitivity, and no loss of specificity in OPSCC patients. This could result in reagent and cost savings.

A GABAergic cell type in the lateral habenula links hypothalamic homeostatic and midbrain motivation circuits with sex steroid signaling

Transl Psychiatry.

2018 Feb 26

Zhang L, Hernández VS, Swinny JD, Verma AK, Giesecke T, Emery AC, Mutig K, Garcia-Segura LM, Eiden LE.
PMID: 29479060 | DOI: 10.1038/s41398-018-0099-5

The lateral habenula (LHb) has a key role in integrating a variety of neural circuits associated with reward and aversive behaviors. There is limited information about how the different cell types and neuronal circuits within the LHb coordinate physiological and motivational states. Here, we report a cell type in the medial division of the LHb (LHbM) in male rats that is distinguished by: (1) a molecular signature for GABAergic neurotransmission (Slc32a1/VGAT) and estrogen receptor (Esr1/ERα) expression, at both mRNA and protein levels, as well as the mRNA for vesicular glutamate transporter Slc17a6/VGLUT2, which we term the GABAergic estrogen-receptive neuron (GERN); (2) its axonal projection patterns, identified by in vivo juxtacellular labeling, to both local LHb and to midbrain modulatory systems; and (3) its somatic expression of receptors for vasopressin, serotonin and dopamine, and mRNA for orexin receptor 2. This cell type is anatomically located to receive afferents from midbrain reward (dopamine and serotonin) and hypothalamic water and energy homeostasis (vasopressin and orexin) circuits. These afferents shared the expression of estrogen synthase (aromatase) and VGLUT2, both in their somata and axon terminals. We demonstrate dynamic changes in LHbM VGAT+ cell density, dependent upon gonadal functional status, that closely correlate with motivational behavior in response to predator and forced swim stressors. The findings suggest that the homeostasis and reward-related glutamatergic convergent projecting pathways to LHbMC employ a localized neurosteroid signaling mechanism via axonal expression of aromatase, to act as a switch for GERN excitation/inhibition output prevalence, influencing depressive or motivated behavior.

Pages

  • « first
  • ‹ previous
  • …
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?