Publications

A CRE/DRE dual recombinase transgenic mouse reveals synaptic zinc-mediated thalamocortical neuromodulation

Synaptic zinc is a neuromodulator that shapes synaptic transmission and sensory processing. The maintenance of synaptic zinc is dependent on the vesicular zinc transporter, ZnT3. Hence, the ZnT3 knockout mouse has been a key tool for studying the mechanisms and functions of synaptic zinc. However, the use of this constitutive knockout mouse has notable limitations, including developmental, compensatory, and brain and cell type specificity issues.

Cell competition for neuron-derived trophic factor controls the turnover and lifespan of microglia

Microglia are brain-resident macrophages capable of long-term maintenance through self-renewal. Yet the mechanism governing the turnover and lifespan of microglia remains unknown. In zebrafish, microglia arise from two sources, rostral blood island (RBI) and aorta-gonad-mesonephros (AGM). The RBI-derived microglia are born early but have a short lifespan and diminish in adulthood, while the AGM-derived microglia emerge later and are capable of long-term maintenance in adulthood.

An independent regulator of global release pathways in astrocytes generates a subtype of extracellular vesicles required for postsynaptic function

Extracellular vesicles (EVs) are heterogeneous in size, composition, and function. We show that the six-transmembrane protein glycerophosphodiester phosphodiesterase 3 (GDE3) regulates actin remodeling, a global EV biogenic pathway, to release an EV subtype with distinct functions. GDE3 is necessary and sufficient for releasing EVs containing annexin A1 and GDE3 from the plasma membrane via Wiskott-Aldrich syndrome protein family member 3 (WAVE3), a major regulator of actin dynamics.

IPAC integrates rewarding and environmental memory during the acquisition of morphine CPP

The association between rewarding and drug-related memory is a leading factor for the formation of addiction, yet the neural circuits underlying the association remain unclear. Here, we showed that the interstitial nucleus of the posterior limb of the anterior commissure (IPAC) integrated rewarding and environmental memory information by two different receiving projections from ventral tegmental area (VTA) and nucleus accumbens shell region (NAcSh) to mediate the acquisition of morphine conditioned place preference (CPP).

A SARS-CoV-2 and influenza double hit vaccine based on RBD-conjugated inactivated influenza A virus

The circulating flu viruses merging with the ongoing COVID-19 pandemic raises a more severe threat that promotes the infectivity of SARS-CoV-2 associated with higher mortality rates. Here, we conjugated recombinant receptor binding domain (RBD) of SARS-CoV-2 spike protein onto inactivated influenza A virus (Flu) to develop a SARS-CoV-2 virus-like particle (VLP) vaccine with two-hit protection. This double-hit vaccine (Flu-RBD) not only induced protective immunities against SARS-CoV-2 but also remained functional as a flu vaccine.

Endocannabinoid signaling in adult hippocampal neurogenesis: A mechanistic and integrated perspective

Dentate gyrus of the hippocampus continuously gives rise to new neurons, namely, adult-born granule cells, which contribute to conferring plasticity to the mature brain throughout life. Within this neurogenic region, the fate and behavior of neural stem cells (NSCs) and their progeny result from a complex balance and integration of a variety of cell-autonomous and cell-to-cell-interaction signals and underlying pathways. Among these structurally and functionally diverse signals, there are endocannabinoids (eCBs), the main brain retrograde messengers.

Peripheral CCL2-CCR2 signalling contributes to chronic headache-related sensitization

Migraine, especially chronic migraine, is highly debilitating and still lacks effective treatment. The persistent headache arises from activation and sensitization of primary afferent neurons in the trigeminovascular pathway, but the underlying mechanisms remain incompletely understood. Animal studies indicate that signaling through chemokine C-C motif ligand 2 (CCL2) and C-C motif chemokine receptor 2 (CCR2) mediates the development of chronic pain after tissue or nerve injury. Some migraine patients had elevated CCL2 levels in CSF or cranial periosteum.

Fibroblast-derived PI16 sustains inflammatory pain via regulation of CD206+ myeloid cells

Originally identified in fibroblasts, Protease Inhibitor (PI)16 was recently shown to be crucial for the development of neuropathic pain via effects on blood-nerve barrier permeability and leukocyte infiltration, though its impact on inflammatory pain has not been established. Using the complete Freund's Adjuvant inflammatory pain model, we show that Pi16-/- mice are protected against sustained inflammatory pain. Accordingly, intrathecal delivery of a PI16 neutralizing antibody in wild-type mice prevented sustained CFA pain.

Spatial enrichment of the type 1 interferon signature in the brain of a neuropsychiatric lupus murine model

Among systemic lupus erythematosus (SLE) patients, neuropsychiatric symptoms are highly prevalent, being observed in up to 80% of adult and 95% of pediatric patients. Type 1 interferons, particularly interferon alpha (IFNα), have been implicated in the pathogenesis of SLE and its associated neuropsychiatric symptoms (NPSLE). However, it remains unclear how type 1 interferon signaling in the central nervous system (CNS) might result in neuropsychiatric sequelae.

Anoctamin 4 channel currents activate glucose-inhibited neurons in the mouse ventromedial hypothalamus during hypoglycemia

Although glucose is the basic fuel essential to maintain the viability and functions of all cells, some neurons, namely glucose-inhibited (GI) neurons, paradoxically increase their firing activities when glucose falls and are inhibited by high glucose. The ionic mechanisms mediating electric responses of GI neurons to glucose fluctuations remain unclear. Here we showed that currents mediated by anoctamin 4 (Ano4) channel are only detected in GI neurons in the ventromedial hypothalamic nucleus (VMH) and are functionally required for their activation in response to low glucose.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com