Publications

Dysregulated metabolism of the late herpes simplex virus 1 transcriptome through the vhs-VP22 axis uncouples virus cytopathic effect and virus production

Herpes simplex virus 1 (HSV1) expresses its genes in a classical cascade culminating in the production of large amounts of structural proteins to facilitate virus assembly. HSV1 lacking the virus protein VP22 (Δ22) exhibits late translational shutoff, a phenotype that has been attributed to the unrestrained activity of the virion host shutoff (vhs) protein, a virus-encoded endoribonuclease which induces mRNA degradation during infection.

Adulthood bisphenol A exposure induces anxiety in male mice via downregulation of alpha-1D adrenergic receptor in paraventricular thalamus

Bisphenol A (BPA), a ubiquitous endocrine disrupting chemical, is widely used in household plastic products. Large amounts of evidence indicate prenatal and postnatal BPA exposure causes neurodevelopmental disorders such as anxiety and autism. However, the neuronal mechanisms underlying the neurotoxic effects of adulthood BPA exposure remain poorly understood. Here, we provided evidences that adult mice treated with BPA (0.45 mg/kg/day) during 3 weeks exhibited sex-specific anxiety like behaviors.

OVX033, a nucleocapsid-based vaccine candidate, provides broad-spectrum protection against SARS-CoV-2 variants in a hamster challenge model

Spike-based COVID-19 vaccines induce potent neutralizing antibodies but their efficacy against SARS-CoV-2 variants decreases. OVX033 is a recombinant protein composed of the full-length nucleocapsid (N) protein of SARS-CoV-2 genetically fused to oligoDOM , a self-assembling domain which improves antigen immunogenicity. OVX033 including N as an antigenic target is proposed as new vaccine candidate providing broad-spectrum protection against sarbecoviruses.

The intestinal γδ T cells: functions in the gut and in the distant organs

Located in the frontline against the largest population of microbiota, the intestinal mucosa of mammals has evolved to become an effective immune system. γδ T cells, a unique T cell subpopulation, are rare in circulation blood and lymphoid tissues, but rich in the intestinal mucosa, particularly in the epithelium. Via rapid production of cytokines and growth factors, intestinal γδ T cells are key contributors to epithelial homeostasis and immune surveillance of infection.

Short exposure to photo-oxidative damage triggers molecular signals indicative of early retinal degeneration

Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world, currently affecting over 350 billion people globally. For the most prevalent late-stage form of this disease, atrophic AMD, there are no available prevention strategies or treatments, in part due to inherent difficulties in early-stage diagnosis. Photo-oxidative damage is a well-established model for studying inflammatory and cell death features that occur in late-stage atrophic AMD, however to date has not been investigated as a potential model for studying early features of disease onset.

The severity of SARS-CoV-2 infection in K18-hACE2 mice is attenuated by a novel steroid-derivative in a gender-specific manner

COVID-19 infections caused by SARS-CoV-2 disseminate through human-to-human transmission can evoke severe inflammation. Treatments to reduce the SARS-CoV-2-associated inflammation are needed and are the focus of much research.

The lncRNA LETS1 promotes TGF-β-induced EMT and cancer cell migration by transcriptionally activating a TβR1-stabilizing mechanism

Transforming growth factor-β (TGF-β) signaling is a critical driver of epithelial-to-mesenchymal transition (EMT) and cancer progression. In SMAD-dependent TGF-β signaling, activation of the TGF-β receptor complex stimulates the phosphorylation of the intracellular receptor-associated SMADs (SMAD2 and SMAD3), which translocate to the nucleus to promote target gene expression. SMAD7 inhibits signaling through the pathway by promoting the polyubiquitination of the TGF-β type I receptor (TβRI).

Interference of sympathetic overactivation restores limbal stem/progenitor cells function and accelerates corneal epithelial wound healing in diabetic mice

Diabetic keratopathy (DK), the diabetic complication in the cornea, is characterized by the delayed epithelial regeneration and sensory nerve degeneration. The involvement of limbal stem/progenitor cells (LSPCs) dysfunction has been reported, however the pathogenic mechanisms remain unclear. Here, we confirmed the dysfunction of LSPCs in diabetic mouse and human corneas. The sympathetic nerve in the cornea was adjacent to LSPCs, and the sympathetic overactivation was found in diabetic mice.

Utility of GLI1 RNA chromogenic in situ hybridization in distinguishing basal cell carcinoma from histopathologic mimics

Basal cell carcinoma (BCC) is the most common human malignancy and is a leading cause of non-melanoma skin cancer-related morbidity. BCC has several histologic mimics which may have treatment and prognostic implications. Furthermore, BCC may show alternative differentiation toward a variety of cutaneous structures. The vast majority of BCCs harbor mutations in the hedgehog signaling pathway, resulting in increased expression of the GLI family of transcription factors.

Inhibition of dorsal raphe GABAergic neurons blocks hyperalgesia during heroin withdrawal

Opioid withdrawal signs, such as hyperalgesia, are manifestations of opioid use disorder that may contribute to opioid seeking and taking. We have previously identified an association between dorsal raphe (DR) neurons and the expression of hyperalgesia during spontaneous heroin withdrawal. Here, we found that chemogenetic inhibition of DR neurons decreased hyperalgesia during spontaneous heroin withdrawal in male and female C57/B6 mice.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com