Publications

Concentration of non-myocyte proteins in arterial media of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy

The most common inherited cause of vascular dementia and stroke, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), is caused by mutations in NOTCH3. Post-translationally altered NOTCH3 accumulates in the vascular media of CADASIL arteries in areas of the vessels that exhibit profound cellular degeneration. The identification of molecules that concentrate in the same location as pathological NOTCH3 may shed light on processes that drive cytopathology in CADASIL.

Lymphocyte deficiency alters the transcriptomes of oligodendrocytes, but not astrocytes or microglia

Though the brain was long characterized as an immune-privileged organ, findings in recent years have shown extensive communications between the brain and peripheral immune cells. We now know that alterations in the peripheral immune system can affect the behavioral outputs of the central nervous system, but we do not know which brain cells are affected by the presence of peripheral immune cells. Glial cells including microglia, astrocytes, oligodendrocytes, and oligodendrocyte precursor cells (OPCs) are critical for the development and function of the central nervous system.

Unexpected failure of rod bipolar cell targeting using L7Cre-2 mice

Utilizing cell type-specific knockout mice has been an excellent tool for decades not only to explore the role of a gene in a specific cell, but also to unravel the underlying mechanism in diseases. To investigate the mechanistic association between dysfunction of the peroxisomal protein multifunctional protein 2 (MFP2) and retinopathy, we generated and phenotyped multiple transgenic mouse models with global or cell type-specific MFP2 deletion. These studies pointed to a potential role of MFP2 specifically in rod bipolar cells.

In vivo modulation of endogenous gene expression via CRISPR/Cas9-mediated 3’UTR editing

The 3' untranslated regions (UTRs) modulate gene expression levels by regulating mRNA stability and translation. We previously showed that the replacement of the negative regulatory elements from the 3'UTR of glial cell line-derived neurotrophic factor (GDNF) resulted in increased endogenous GDNF expression while retaining its normal spatiotemporal expression pattern. Here, we have developed a methodology for the generation of in vivo hyper- and hypomorphic alleles via 3'UTR targeting using the CRISPR/Cas9 system.

Tropism of Puumala orthohantavirus and Endoparasite Coinfection in the Bank Vole Reservoir

In Europe, most cases of human hantavirus disease are caused by Puumala orthohantavirus (PUUV) transmitted by bank voles (Clethrionomys glareolus, syn. Myodes glareolus), in which PUUV causes inconspicuous infection. Little is known about tropism and endoparasite coinfections in PUUV-infected reservoir and spillover-infected rodents. Here, we characterized PUUV tropism, pathological changes and endoparasite coinfections.

Overview of the role and action mechanism of microRNA-128 in viral infections

Recently in vivo and in vitro studies have provided evidence establishing the significance of microRNAs (miRNAs) in both physiological and pathological conditions. In this regard, the role of miRNA-128 (miR-128) in health and diseases has been found, and its critical regulatory role in the context of some viral diseases has been recently identified. For instance, it has been found that miR-128 can serve as an antiviral mediator and significantly limit the replication and dissemination of human immunodeficiency virus type 1 (HIV-1).

Interactions between β‐endorphin and kisspeptin neurons of the ewe arcuate nucleus are modulated by photoperiod.

Opioid peptides are well-known modulators of the central control of reproduction. Among them, dynorphin coexpressed in kisspeptin (KP) neurons of the arcuate nucleus (ARC) has been thoroughly studied for its autocrine effect on KP release through κ opioid receptors. Other studies have suggested a role for β-endorphin (BEND), a peptide cleaved from the pro-opiomelanocortin precursor, on food intake and central control of reproduction. Similar to KP, BEND content in the ARC of sheep is modulated by day length and BEND modulates food intake in a dose-dependent manner.

Whole Exome Sequencing Study Suggests an Impact of FANCA, CDH1 and VEGFA Genes on Diffuse Gastric Cancer Development

Gastric cancer (GC) is one of the most common cancer types in the world with a high mortality rate. Hereditary predisposition for GC is not fully elucidated so far. The aim of this study was identification of possible new candidate genes, associated with the increased risk of gastric cancer development. Whole exome sequencing (WES) was performed on 18 DNA samples from adenocarcinoma specimens and non-tumor-bearing healthy stomach tissue from the same patient.

3'UTR Diversity: Expanding Repertoire of RNA Alterations in Human mRNAs

Genomic information stored in the DNA is transcribed to the mRNA and translated to proteins. The 3' untranslated regions (3'UTRs) of the mRNA serve pivotal roles in posttranscriptional gene expression, regulating mRNA stability, translation, and localization. Similar to DNA mutations producing aberrant proteins, RNA alterations expand the transcriptome landscape and change the cellular proteome. Recent global analyses reveal that many genes express various forms of altered RNAs, including 3'UTR length variants.

Three dimensional models of dedifferentiated liposarcoma cell lines: scaffold-based and scaffold-free approaches

Sarcomas are rare malignancies, the number of reports is limited, and this rarity makes further research difficult even though liposarcoma is one of major sarcomas. 2D cell culture remains an important role in establishing basic tumor biology research, but its various shortcomings and limitations are still of concern, and it is now well-accepted that the behavior of 3D-cultured cells is more reflective of in vivo cellular responses compared to 2D models.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com