Publications

An Overview of Gene Editing Modalities and Related Non-clinical Testing Considerations

Gene therapy has become an important modality for a wide range of therapeutic indications with a rapid increase in the number of therapeutic candidates being developed in this field. Understanding the molecular biology underlying the gene therapy is often critical to develop appropriate safety assessment strategies. We aimed to discuss some of the commonly used gene therapy modalities and common preclinical toxicology testing considerations when developing gene therapies.

Neuropathological features of SARS-CoV-2 delta and omicron variants

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continually evolving resulting in variants with increased transmissibility, more severe disease, reduced effectiveness of treatments or vaccines, or diagnostic detection failure. The SARS-CoV-2 Delta variant (B.1.617.2 and AY lineages) was the dominant circulating strain in the United States from July to mid-December 2021, followed by the Omicron variant (B.1.1.529 and BA lineages).

Characterization of experimental Shuni virus infection in the mouse

Shuni virus (SHUV), an orthobunyavirus of the Simbu serogroup, was initially isolated in Nigeria in the 1960s, further detected in other African countries and in the Middle East, and is now endemic in Israel. Transmitted by blood-sucking insects, SHUV infection is associated with neurological disease in cattle and horses, and with abortion, stillbirth, or the birth of malformed offspring in ruminants. Surveillance studies also indicated a zoonotic potential.

HPV-related oropharyngeal squamous cell carcinoma and radiomics: a new era?

The increase of the incidence of Human Papilloma Virus (HPV) dependent oropharyngeal squamous cell carcinoma (OPSCC) is alarming, although we have greatly progressed in the classification and staging of this disease. We now know that OPSCC-HPV+ is a sub-type of head and neck squamous cell carcinoma with favourable prognosis and good response to therapy that needs a proper system of classification and staging. Thus, in routine practice it is essential to test patients for the presence of HPV.

Immune priming prior to pathogen exposure sheds light on the relationship between host, microbiome and pathogen in disease

Dynamic interactions between host, pathogen and host-associated microbiome dictate infection outcomes. Pathogens including Batrachochytrium dendrobatidis (Bd) threaten global biodiversity, but conservation efforts are hindered by limited understanding of amphibian host, Bd and microbiome interactions. We conducted a vaccination and infection experiment using Eastern hellbender salamanders (Cryptobranchus alleganiensis alleganiensis) challenged with Bd to observe infection, skin microbial communities and gene expression of host skin, pathogen and microbiome throughout the experiment.

Molecular mechanisms of cardiac complications associated with COVID-19

The COVID-19 pandemic has had a devastating global impact, resulting in over 5,000,000 deaths. In the United States alone, over 1,000,000 individuals have died from COVID-19. Cardiovascular complications of COVID-19 include arrhythmias, heart failure, and myocardial infarction and COVID-19 has differentially impacted racial and ethnic groups. Ethnic minority groups, including African Americans and Hispanics, have a higher risk of COVID-19 hospitalization and death, independent of their socioeconomic, lifestyle and health-related factors.

Heart failure (HF) alters distribution and spatial association profiles of calmodulin (CaM) and CaM target protein mRNAs

Aberrant Ca-CaM signaling has been implicated in various congenital and acquired cardiac pathologies, including arrhythmia, hypertrophy, and HF. We examined the impact of HF induced by trans-aortic constriction (TAC) on the distribution of the three CaM mRNAs (Calm 1,2 and 3) and their key protein target mRNAs (Ryr2, Scn5a, Camk2d, NOS1 and Cacna1c) in cardiomyocytes, using fluorescence in situ hybridization (RNAScope™).

An integrate-and-fire approach to Ca2+ signaling—The noise of puffs

Stochastic spiking is a prominent feature of Ca2+ signaling. The main noise source at the cellular level are puffs from inositol-trisphosphate receptor (IP3R) channel clusters in the membrane of the endoplasmic reticulum (ER). While the random cluster activity has been known for decades, a stringent method to derive the puff noise term acting on the cytosolic Ca2+ concentration is still lacking. We adopt a popular description of neural spike generation from neuroscience, the stochastic integrate-and-fire (IF) model, to describe Ca2+ spiking.

Physiological significance of tissue-specific MICU regulation of mitochondrial calcium uptake

The mitochondrial calcium uniporter is a multi-subunit calcium channel that imports Ca2+ into mitochondria. Its MICU subunits (MICU1, MICU2, and the neuron-specific MICU3) gate the channel by blocking the pore in low Ca2+. Upon local Ca2+ elevation, Ca2+ binds to MICUs to cause MICU unblock, thus opening the pore so Ca2+ can permeate. Previous work using cell lines suggests that the uniporter in mammalian cells is exclusively regulated by a MICU1-MICU2 heterodimer.

Caveolae-restricted mechano-chemical signal transduction in mouse atrial myocytes

Atrial fibrillation (AF) is commonly observed in patients with hypertension and is associated with pathologically elevated cardiomyocyte stretch. AF triggers have been linked to subcellular Ca2+ abnormalities, while their association with stretch remains elusive. Caveolae are mechanosensitive membrane structures, that play a role in both Ca2+ and cyclic adenosine monophosphate (cAMP) signaling. Therefore, caveolae could provide a mechanistic connection between cardiomyocyte stretch, Ca2+ mishandling, and AF.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com