Publications

Vasculature atrophy causes a stiffened microenvironment that augments epidermal stem cell differentiation in aged skin

Stem cell loss causes tissue deterioration associated with aging. The accumulation of genomic and oxidative stress-induced DNA damage is an intrinsic cue for stem cell loss1 [/articles/s43587-022-00244-6#ref-CR1],2 [/articles/s43587-022-00244-6#ref-CR2]; however, whether there is an external microenvironmental cue that triggers stem cell loss remains unclear. Here we report that the involution of skin vasculature causes dermal stiffening that augments the differentiation and hemidesmosome fragility of interfollicular epidermal stem cells (IFESCs) in aged mouse skin.

Single-cell analysis of the aging female mouse hypothalamus

Alterations in metabolism, sleep patterns, body composition and hormone status are all key features of aging. While the hypothalamus is a well-conserved brain region that controls these homeostatic and survival-related behaviors, little is known about the intrinsic features of hypothalamic aging. Here, we perform single-nuclei RNA sequencing of 40,064 hypothalamic nuclei from young and aged female mice. We identify cell type-specific signatures of aging in neuronal subtypes as well as astrocytes and microglia.

Pregabalin improves axon regeneration and motor outcome in a rodent stroke model

Ischemic stroke remains a leading cause of death and disability worldwide. Surviving neurons in the peri-infarct area are able to establish novel axonal projections to juxtalesional regions, but this regeneration is curtailed by a growth-inhibitory environment induced by cells such as reactive astrocytes in the glial scar.

NIH SenNet Consortium: Mapping Senescent Cells in the Human Body to Understand Health and Disease

Cells respond to a myriad of stressors by senescing, acquiring stable growth arrest, morphologic and metabolic changes, and a senescence-associated-secretory-phenotype (SASP). The heterogeneity of senescent cells (SnCs) and their SASP is vast, yet poorly characterized. SnCs have diverse roles in health and disease and are therapeutically targetable, making characterization of SnCs and harmonization of their nomenclature a priority.

Functional and Developmental Heterogeneity of Pituitary Lactotropes in Medaka

In fish, prolactin-producing cells (lactotropes) are located in the anterior part of the pituitary and play an essential role in osmoregulation. However, small satellite lactotrope populations have been described in other parts of the pituitary in several species. The functional and developmental backgrounds of these extra populations are not known. We recently described two distinct prolactin-expressing cell types in Japanese medaka, a salinity tolerant fish, using single cell transcriptomics.

Microglia Are Involved in Regulating Histamine Dependent and Non-Dependent Itch Transmissions With Distinguished Signal Pathways

Although itch and pain have many similarities, they are completely different in perceptual experience and behavioral response. In recent years, we have a deep understanding of the neural pathways of itch sensation transmission. However, there are few reports on the role of non-neuronal cells in itch. Microglia are known to play a key role in chronic neuropathic pain and acute inflammatory pain. It is still unknown whether microglia are also involved in regulating the transmission of itch sensation.

Data Processing and Germline Variant Calling with the Sentieon Pipeline

Public and private genomic sequencing initiatives generate ever-increasing amounts of genomic data creating a need for improved solutions for genomics data processing (Stephens et al.PLoS Biol 13:e1002195, 2015). The Sentieon Genomics software enables rapid and accurate analysis of next-generation sequence data. In this work, we present a typical use of the Sentieon Genomics software for germline variant calling. The Sentieon germline variant calling pipeline produces more accurate results than other tools on third-party benchmarks (Katherine et al. Front Genet 10:736, 2019; Shen et al.

A Case of HPV-Associated Oropharyngeal Squamous Cell Carcinoma with Block-Like, Partial Loss of p16 Expression

Oropharyngeal squamous cell carcinoma is frequently associated with high-risk HPV infection, which confers a good prognosis. Immunohistochemistry for p16 is used as a surrogate for HPV status, but discrepant results are occasionally seen. Here, we report a case with a unique pattern of partial loss of p16.A 63 year old male presented with a base of tongue nonkeratinizing squamous cell carcinoma and a large metastatic neck mass.

[Clinicopathological features of mixed cervical carcinoma with adenoid cystic pattern]

Objective: To investigate the clinicopathological characteristics, immunophenotype, molecular characteristics, differential diagnosis, clinical treatment and prognosis of mixed carcinoma of cervix with adenoid cystic pattern. Methods: Three cases of mixed cervical carcinoma with adenoid cystic pattern were collected at the Affiliated Hospital of Xuzhou University Medical School from 2018 to 2021.The clinicopathological characteristics were analyzed, immunohistochemistry (IHC) and in situ hybridization (ISH) were performed. The related literature was reviewed.

Human Papillomavirus-Associated Oral Cavity Squamous Cell Carcinoma: An Entity with Distinct Morphologic and Clinical Features

HPV-associated oral cavity squamous cell carcinoma (SCC) is not well-characterized in the literature, and also has a clinical significance that is poorly understood.We gathered a cohort of oral cavity (OC) SCC with nonkeratinizing morphology, either in the invasive or in situ carcinoma (or both), tested for p16 by immunohistochemistry and high risk HPV E6/E7 mRNA by RTPCR (reference standard for transcriptionally-active high risk HPV) and gathered detailed morphologic and clinicopathologic data.Thirteen patients from two institutions were proven to be HPV-associated by combined p16 and high

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com