Publications

Htr1b is required for normal mouse vision and retinal physiology

METHODS : 8-week wild-type mice were used to determine gene (_Htr1b_) expression. RNAscope _in situ_ hybridization (ISH) was performed on retinal cryosections and imaged using confocal microscopy. Whole field flash electroretinograms (ERGs) were used to record scotopic and photopic amplitudes in 22 mice (8 _Htr1b_-/-; 8 _Htr1b_+/-; 6 WT). Positive scotopic threshold response (pSTR), b-wave, and a-wave amplitudes were recorded. Visual behavior was evaluated in _Htr1b_-/- mice and controls by assessing the scotopic and photopic optokinetic response.

Disease-driven Prolactin Isoform Expression in Canine Inherited Retinopathies

RESULTS : PR-specific expression of _PRLΔE1_ was observed in the following canine models of progressive inherited retinal degeneration (IRD): _RPGR_-XLPRA1 and _NPHP5_-LCA. In _RPGR_-XLPRA2 carrier retinas that undergo random X-inactivation, patches of_ PRLΔE1 _expression correlated with patches of PR degeneration. However, we did not observe expression of _PRLΔE1_ 24 hrs and 2 wks after light exposure that triggers acute rod loss in the canine RHO-T4R model of adRP. No _PRLΔE1 _expression was seen either in the _CNGB3_-ACHM3 retina that undergoes extremely slow cone degeneration.

Introducing a novel Mthfr677C> T mouse to model a common risk variant for glaucoma

PURPOSE : Methylenetetrahydrofolate reductase (_MTHFR_) is a critical enzyme in the folate/methionine/homocysteine pathway. Variants in _MTHFR, _notably _677C>T,_ have_ _been associated with glaucoma as well as Alzheimer’s disease and vascular dementia, suggesting an overlapping mechanism in brain and eye. However, mechanisms driving increased risk are not known, hindering the development of new treatments. Approximately 30% of individuals carry at least one copy of _MTHFR677C>T_, causing a 50% decrease in MTHFR enzyme efficiency.

Hedgehog signaling promotes expansion of Meibomian Gland stem cells in vivo

RESULTS : Short-term lineage tracing data showed that _Lrig1_, _Lgr6_ and _Axin2_ label basal cells in MG ducts and acini. Long-term lineage tracing results showed that clones of labeled cells persist through multiple rounds of ductal and acinar renewal and give rise to differentiated progeny, identifying _Lrig1_+, _Lgr6_+ and _Axin2+_ ductal and acinar basal cells as self-renewing SCs. Forced expression of GLI2ΔN enhanced basal proliferation, caused expansion of _Lrig1_+ SCs, and lead to replacement of lipid-filled meibocytes by proliferative and poorly differentiated acinar cells.

Wnt signaling pathway in the human limbus: a comprehensive mapping by single mRNA detection

RESULTS : All 4 Wnt ligands, 4 Wnt inhibitors, and Fzd7 were preferentially expressed in the basal layer of the cornea and limbus compared to the suprabasal layer (_P_

Early neuroinflammatory responses in the visual pathway in a feline inherited glaucoma model

METHODS : Retinal, optic nerve head (ONH) and distal optic nerve (ON) tissues from 8 juvenile 10-12 week-old cats (4 males and 4 females) with feline congenital glaucoma (FCG) and 5 age-matched normal control cats (3 males and 2 females) were used. Data for weekly intraocular pressure (IOP) and optic nerve axon counts were available for all subjects. Protein and gene expression in tissue cryosections were examined by immunofluorescence labeling (IF) and RNAscope in situ hybridization (ISH), respectively. Retinal tissue was IF labeled for myeloid cell marker, IBA-1 and flat-mounted.

Identification and characterization of a novel retina-specific lncRNA upstream ABCA4 with a potential role in ABCA4-associated inherited retinal disease

* Alfredo Dueñas Rey Universitair Ziekenhuis Gent Centrum Medische Genetica Gent, Gent, Belgium Department of Biomolecular Medicine, Universiteit Gent Faculteit Geneeskunde en Gezondheidswetenschappen, Gent, Belgium * Víctor López-Soriano Universitair Ziekenhuis Gent Centrum Medische Genetica Gent, Gent, Belgium Department of Biomolecular Medicine, Universiteit Gent Faculteit Geneeskunde en Gezondheidswetenschappen, Gent, Belgium * Zelia Corradi Radboudumc Department of Human Genetics, Nijmegen, Gelderland, Netherlands * Claire-Marie Dhaenens Univ.

Cross-species single-cell transcriptomic analysis reveals factors limiting human Müller glial-derived retinal regeneration

RESULTS : After quality control and data integration, 17,401 nuclei were isolated from 26,471 original droplets, derived from macular samples of 4 patients without retinal disease and 3 patients with POAG. The proportion of retinal ganglion cells in glaucomatous retina was significantly lower than that in healthy retina (p=0.024). An activated subpopulation of Müller glia was identified in both healthy and glaucomatous retina by cell clustering. Cross-species analysis comparing zebrafish and humans identified YAP1 activation as a differentiator between zebrafish and human glial activation.

Spatial Sequencing in a Model of Early Onset Retinal Degeneration

RESULTS : Uniform Manifold Approximation and Projection clustering identified distinct expression signatures from the ganglion cell layer(GCL), inner nuclear layer(INL), retinal pigment epithelium (RPE)/choroid/sclera, optic nerve, and ciliary body (Fig, 1) but not the outer nuclear layer(ONL) which was contaminated with expression from other layers. Our findings highlight Clu, C4b, Apoe, and C1qa genes (z-score 3.0, 2.4, 2.3, and 2.2) as potential markers of disease in the RPE.

Detection of Cytauxzoon Felis in Salivary Glands of Amblyomma Americanum

Cytauxzoon felis is a tick-borne piroplasmid hemoparasite that causes life-threatening disease in cats. Despite the critical role that ticks play in disease transmission and development, our knowledge regarding the C. felis life cycle remains limited to the feline hosts and no stage of the parasite has been identified or investigated in ticks. Sporozoites are the infectious stage of piroplasmids that are transmitted by ticks. In other tick-borne piroplasmids, sporozoites have played a key role in disease prevention and management.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com