Publication

Effects and sites of action of a M1 receptor positive allosteric modulator on colonic motility in rats and dogs compared with 5-HT4 agonism and cholinesterase inhibition

BACKGROUND:
Muscarinic receptor 1 positive allosteric modulators (M1PAMs) enhance colonic propulsive contractions and defecation through the facilitation of M1 receptor (M1R)-mediated signaling. We examined M1R expression in the colons of 5 species and compared colonic propulsion and defecation caused by the M1PAM, T440, the 5-HT4 agonist, prucalopride, and the cholinesterase inhibitor, neostigmine, in rats and dogs.

Targeting codon 158 p53-mutant cancers via the induction of p53 acetylation

Gain of function (GOF) DNA binding domain (DBD) mutations of TP53 upregulate chromatin regulatory genes that promote genome-wide histone methylation and acetylation. Here, we therapeutically exploit the oncogenic GOF mechanisms of p53 codon 158 (Arg158) mutation, a DBD mutant found to be prevalent in lung carcinomas. Using high throughput compound screening and combination analyses, we uncover that acetylating mutp53R158G could render cancers susceptible to cisplatin-induced DNA stress.

LSD1-mediated enhancer silencing attenuates retinoic acid signalling during pancreatic endocrine cell development

Developmental progression depends on temporally defined changes in gene expression mediated by transient exposure of lineage intermediates to signals in the progenitor niche. To determine whether cell-intrinsic epigenetic mechanisms contribute to signal-induced transcriptional responses, here we manipulate the signalling environment and activity of the histone demethylase LSD1 during differentiation of hESC-gut tube intermediates into pancreatic endocrine cells.

A Sparse, Spatially Biased Subtype of Mature Granule Cell Dominates Recruitment in Hippocampal-Associated Behaviors

Animals can store information about experiences by activating specific neuronal populations, and subsequent reactivation of these neural ensembles can lead to recall of salient experiences. In the hippocampus, granule cells of the dentate gyrus participate in such memory engrams; however, whether there is an underlying logic to granule cell participation has not been examined. Here, we find that a range of novel experiences preferentially activates granule cells of the suprapyramidal blade relative to the infrapyramidal blade.

Rheb1-Independent Activation of mTORC1 in Mammary Tumors Occurs through Activating Mutations in mTOR

Mechanistic target of rapamycin complex 1 (mTORC1) is a master modulator of cellular growth, and its aberrant regulation is recurrently documented within breast cancer. While the small GTPase Rheb1 is the canonical activator of mTORC1, Rheb1-independent mechanisms of mTORC1 activation have also been reported but have not been fully understood. Employing multiple transgenic mouse models of breast cancer, we report that ablation of Rheb1 significantly impedes mammary tumorigenesis.

Astrovirus infects actively secreting goblet cells and alters the gut mucus barrier.

Astroviruses are a global cause of pediatric diarrhea, but they are largely understudied, and it is unclear how and where they replicate in the gut. Using an in vivo model, here we report that murine astrovirus preferentially infects actively secreting small intestinal goblet cells, specialized epithelial cells that maintain the mucus barrier. Consequently, virus infection alters mucus production, leading to an increase in mucus-associated bacteria and resistance to enteropathogenic E. coli colonization.

A single-dose ChAdOx1-vectored vaccine provides complete protection against Nipah Bangladesh and Malaysia in Syrian golden hamsters

Nipah virus (NiV) is a highly pathogenic re-emerging virus that causes outbreaks in South East Asia. Currently, no approved and licensed vaccine or antivirals exist. Here, we investigated the efficacy of ChAdOx1 NiVB, a simian adenovirus-based vaccine encoding NiV glycoprotein (G) Bangladesh, in Syrian hamsters.

Mouse models of X-linked juvenile retinoschisis have an early onset phenotype, the severity of which varies with genotype

X-linked juvenile retinoschisis (XLRS) is an early onset inherited condition that affects primarily males and is characterized by cystic lesions of the inner retina, decreased visual acuity and contrast sensitivity, and a selective reduction of the electroretinogram (ERG) b-wave. Although XLRS is genetically heterogeneous, all mouse models developed to date involve engineered or spontaneous null mutations.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com