Publication

IL-4 induces M2 macrophages to produce sustained analgesia via opioids

IL-4 is a pleiotropic antiinflammatory cytokine, which can be neuroprotective after nervous system injury. The beneficial actions of IL-4 are thought to result from the blunting of action of inflammatory mediators, such as proinflammatory cytokines. Here, we demonstrate that IL-4 induces M2 macrophages to continuously produce opioid peptides and ameliorate pain. IL-4 application at injured nerves in mice shifted F4/80+ macrophages from the proinflammatory M1 to the antiinflammatory M2 phenotype, which synthesized opioid peptides (Met-enkephalin, ?-endorphin, and dynorphin A 1-17).

Therapeutic potential of KLF2-induced exosomal microRNAs in pulmonary hypertension

Pulmonary arterial hypertension (PAH) is a severe disorder of lung vasculature that causes right heart failure. Homoeostatic effects of flow-activated transcription factor Kr�ppel-like factor 2 (KLF2) are compromised in PAH. Here, we show that KLF2-induced exosomal microRNAs, miR-181a-5p and miR-324-5p act together to attenuate pulmonary vascular remodelling and that their actions are mediated by Notch4 and ETS1 and other key regulators of vascular homoeostasis.

Experimental infection of Egyptian rousette bats (Rousettus aegyptiacus) with Sosuga virus demonstrates potential transmission routes for a bat-borne human pathogenic paramyxovirus

In August 2012, a wildlife biologist became severely ill after becoming infected with a novel paramyxovirus, termed Sosuga virus. In the weeks prior to illness, the patient worked with multiple species of bats in South Sudan and Uganda, including Egyptian rousette bats (ERBs: Rousettus aegyptiacus). A follow-up study of Ugandan bats found multiple wild-caught ERBs to test positive for SOSV in liver and spleen.

Persistent Low Level of Hepatitis B Virus Promotes Fibrosis Progression During Therapy.

BACKGROUND & AIMS:
Progression of liver fibrosis still occurs in some patients with chronic hepatitis B virus (HBV) infection despite antiviral therapy. We aimed to identify risk factors for fibrosis progression in patients who received antiviral therapy.

A Functional Synonymous Variant in PDGFRA Is Associated with Better Survival in Acral Melanoma

Purpose: Polymorphisms of genes in the platelet-derived growth factor (PDGF) signaling pathway have been found to predict cutaneous melanoma (CM) survival, but their clinical effects in acral melanoma (AM) patients have not been explored. The aim of this study was to characterize the functional effect of the tag single-nucleotide polymorphism (SNP) rs2228230:C>T and assess its association with clinical outcomes in AM patients. Methods: The effect of rs2228230:C>T on mRNA structures and codon usage values were evaluated using in silico analyses.

Identification of region-specific astrocyte subtypes at single cell resolution

Astrocytes, a major cell type found throughout the central nervous system, have general roles in the modulation of synapse formation and synaptic transmission, blood-brain barrier formation, and regulation of blood flow, as well as metabolic support of other brain resident cells. Crucially, emerging evidence shows specific adaptations and astrocyte-encoded functions in regions, such as the spinal cord and cerebellum. To investigate the true extent of astrocyte molecular diversity across forebrain regions, we used single-cell RNA sequencing.

Cancer associated fibroblast FAK regulates malignant cell metabolism.

Emerging evidence suggests that cancer cell metabolism can be regulated by cancer-associated fibroblasts (CAFs), but the mechanisms are poorly defined. Here we show that CAFs regulate malignant cell metabolism through pathways under the control of FAK. In breast and pancreatic cancer patients we find that low FAK expression, specifically in the stromal compartment, predicts reduced overall survival. In mice, depletion of FAK in a subpopulation of CAFs regulates paracrine signals that increase malignant cell glycolysis and tumour growth.

Immunopathological characterization of red focal changes in Atlantic salmon (Salmo salar) white muscle

Farmed Atlantic salmon (Salmo salar) are prone to various conditions affecting the quality of the fillet. A well-known but so far poorly understood condition is the focal red changes in muscle, often referred to as haemorrhages. Such changes are characterized by muscle necrosis, haemorrhages and acute inflammation. They can progress into focal melanised changes, a chronic inflammatory condition with melanin-producing leukocytes. The initial cause of intramuscular haemorrhages is unknown. In this study, we aimed to reveal some of their key immunological features.

Exploration of sensory and spinal neurons expressing gastrin-releasing peptide in itch and pain related behaviors

Gastrin-releasing peptide (GRP) functions as a neurotransmitter for non-histaminergic itch, but its site of action (sensory neurons vs spinal cord) remains controversial. To determine the role of GRP in sensory neurons, we generated a floxed Grp mouse line. We found that conditional knockout of Grp in sensory neurons results in attenuated non-histaminergic itch, without impairing histamine-induced itch.

Expression pattern of Nav2 in the murine CNS with development

Neuron navigator 2 (NAV2, RAINB1, POMFIL2, HELAD1, unc53H2) is essential for nervous system development. In the present study the spatial distribution of Nav2 transcript in mouse CNS during embryonic, postnatal and adult life is examined. Because multiple NAV2 proteins are predicted based on alternate promoter usage and RNA splicing, in situ hybridization was performed using probes designed to the 5' and 3' ends of the Nav2 transcript, and PCR products using primer sets spanning the length of the mRNA were also examined by real time PCR (qPCR).

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com