Publications

Combined genetic deletion of GDF15 and FGF21 has modest effects on body weight, hepatic steatosis and insulin resistance in high fat fed mice

Obesity in humans and mice is associated with elevated levels of two hormones responsive to cellular stress, namely GDF15 and FGF21. Over-expression of each of these is associated with weight loss and beneficial metabolic changes but where they are secreted from and what they are required for physiologically in the context of overfeeding remains unclear.Here we used tissue selective knockout mouse models and human transcriptomics to determine the source of circulating GDF15 in obesity.

Chemogenetic strategies at whole-body, or specifically within VMH, confirm phenotype Relaxin/insulin-like family peptide receptor 4 (Rxfp4) expressing hypothalamic neurons modulate food intake and preference in mice

Insulin-like peptide 5 (INSL5) signalling, through its cognate receptor relaxin/insulin-like-family-peptide-receptor-4 (RXFP4), has been reported to be orexigenic, and the preference for high fat diet (HFD) observed in wildtype mice is altered in Rxfp4 knock-out mice. In this study, we used a new Rxfp4-Cre mouse model to investigate the mechanisms underlying these observations.We generated transgenic Rxfp4-Cre mice and investigated central expression of Rxfp4 by RT-qPCR, RNAscope and intraparenchymal infusion of INSL5.

Satellite glia modulate sympathetic neuron survival, activity, and autonomic function

Satellite glia are the major glial cells in sympathetic ganglia, enveloping neuronal cell bodies. Despite this intimate association, the extent to which sympathetic functions are influenced by satellite glia in vivo remains unclear. Here, we show that satellite glia are critical for metabolism, survival, and activity of sympathetic neurons and modulate autonomic behaviors in mice. Adult ablation of satellite glia results in impaired mTOR signaling, soma atrophy, reduced noradrenergic enzymes, and loss of sympathetic neurons.

A CLAVATA3-like gene acts as a gynoecium suppression function in White Campion

How do separate sexes originate and evolve? Plants provide many opportunities to address this question as they have diverse mating systems and separate sexes (dioecy) that evolved many times independently. The classic 'two-factor' model for evolution of separate sexes proposes that males and females can evolve from hermaphrodites via the spread of male and female sterility mutations that turn hermaphrodites into females and males, respectively.

Humanized zebrafish as a tractable tool for in vivo evaluation of pro-myelinating drugs

Therapies that promote neuroprotection and axonal survival by enhancing myelin regeneration are an unmet need to prevent disability progression in multiple sclerosis. Numerous potentially beneficial compounds have originated from phenotypic screenings but failed in clinical trials. It is apparent that current cell- and animal-based disease models are poor predictors of positive treatment options, arguing for novel experimental approaches.

Keratinocyte-derived cytokine TSLP promotes growth and metastasis of melanoma by regulating the tumor-associated immune microenvironment

Malignant melanoma is a major public health issue displaying frequent resistance to targeted therapy and immunotherapy. A major challenge is to better understand how melanoma cells evade immune elimination and how tumor growth and metastasis is facilitated by tumor microenvironment. Here, we show that expression of the cytokine TSLP by epidermal keratinocytes is induced by cutaneous melanoma in both mice and humans.

Insulin increases sensory nerve density and reflex bronchoconstriction in obese mice

Obesity-induced asthma responds poorly to all current pharmacological interventions, including steroids; suggesting that classic, eosinophilic inflammation is not a mechanism. As insulin resistance and hyperinsulinemia are common in obese individuals and associated with increased risk of asthma, we used diet-induced obese mice to study how insulin induces airway hyperreactivity. Inhaled 5-HT or methacholine induced dose dependent bronchoconstriction that was significantly potentiated in obese mice.

DIO3 protects from thyrotoxicosis-derived cranio-encephalic and cardiac congenital abnormalities

Maternal hyperthyroidism is associated with an increased incidence of congenital abnormalities at birth, but it is not clear which of those defects arise from a transient developmental excess of thyroid hormone, and which depend on pregnancy stage, antithyroid drug choice, or unwanted subsequent fetal hypothyroidism. To address this issue we studied a mouse model of comprehensive developmental thyrotoxicosis secondary to a lack of type 3 deiodinase (DIO3). Dio3-/- mice exhibit reduced neonatal viability on most genetic backgrounds and perinatal lethality on a C57BL/6 background.

Clearance of small intestinal crypts involves goblet cell mucus secretion by intracellular granule rupture and enterocyte ion transport

Goblet cells in the small intestinal crypts contain large numbers of mucin granules that are rapidly discharged to clean bacteria from the crypt. Because acetylcholine released by neuronal and nonneuronal cells controls many aspects of intestinal epithelial function, we used tissue explants and organoids to investigate the response of the small intestinal crypt to cholinergic stimulation. The activation of muscarinic acetylcholine receptors initiated a coordinated and rapid emptying of crypt goblet cells that flushed the crypt contents into the intestinal lumen.

A Novel LncRNA SNHG3 Promotes Osteoblast Differentiation Through BMP2 Upregulation in Aortic Valve Calcification

Based on high-throughput transcriptomic sequencing, SNHG3 was among the most highly expressed long noncoding RNAs in calcific aortic valve disease. SNHG3 upregulation was verified in human and mouse calcified aortic valves. Moreover, in vivo and in vitro studies showed SNHG3 silencing markedly ameliorated aortic valve calcification. In-depth functional assays showed SNHG3 physically interacted with polycomb repressive complex 2 to suppress the H3K27 trimethylation BMP2 locus, which in turn activated BMP2 expression and signaling pathways.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com