Publications

Delayed effects of radiation in adipose tissue reflect progenitor damage and not cellular senescence

The pathogenesis of many age-related diseases is linked to cellular senescence, a state of inflammation-inducing, irreversible cell cycle arrest. The consequences and mechanisms of age-associated cellular senescence are often studied using in vivo models of radiation exposure. However, it is unknown whether radiation induces persistent senescence, like that observed in ageing. We performed analogous studies in mice and monkeys, where young mice and rhesus macaques received sub-lethal doses of ionizing radiation and were observed for ~ 15% of their expected lifespan.

EGFR signaling is overactive in Pachyonychia congenita: effective treatment with oral erlotinib

Pachyonychia congenita (PC) is a rare keratinizing disorder characterized by painful palmoplantar keratoderma (PPK) for which there is no standard current treatment. PC is caused by dominant mutations in keratin 6A, 6B, 6C, 16, and 17 genes involved in stress, wound healing, and epidermal barrier formation. Mechanisms leading to pain and PPK in PC remain elusive. Here, we show overexpression of EGFR ligands epiregulin and TGF-α as well as HER1-EGFR and HER2 in the upper spinous layers of PC lesions. EGFR activation was confirmed by upregulated MAPK/ERK and mTOR signaling.

auts2 Features and Expression Are Highly Conserved during Evolution Despite Different Evolutionary Fates Following Whole Genome Duplication

The AUTS2 gene plays major roles during brain development and is associated with various neuropathologies including autism. Data in non-mammalian species are scarce, and the aim of our study was to provide a comprehensive analysis of auts2 evolution in teleost fish, which are widely used for in vivo functional analysis and biomedical purposes. Comparative genomics in 78 species showed that auts2a and auts2b originate from the teleost-specific whole genome duplication (TGD). auts2a, which is highly similar to human AUTS2, was almost systematically retained following TGD.

Epithelial ER Stress Enhances the Risk of Muc5b Associated Lung Fibrosis

The gain-of-function minor allele of the MUC5B promoter (rs35705950) is the strongest risk factor for idiopathic pulmonary fibrosis (IPF), a devastating fibrotic lung disease that leads to progressive respiratory failure in adults. We have previously demonstrated that Muc5b overexpression in mice worsens lung fibrosis following bleomycin exposure and have hypothesized that excess Muc5b promotes endoplasmic reticulum (ER) stress and apoptosis, stimulating fibrotic lung injury.

Interferon Lambda Signals in Maternal Tissues to Exert Protective and Pathogenic Effects in a Gestational Stage-Dependent Manner

Interferon lambda (IFN-λ) (type III IFN) is constitutively secreted from human placental cells in culture and reduces Zika virus (ZIKV) transplacental transmission in mice. However, the roles of IFN-λ during healthy pregnancy and in restricting congenital infection remain unclear. Here, we used mice lacking the IFN-λ receptor (Ifnlr1-/-) to generate pregnancies lacking either maternal or fetal IFN-λ responsiveness and found that the antiviral effect of IFN-λ resulted from signaling exclusively in maternal tissues.

Grpr expression defines a population of superficial dorsal horn vertical cells that have a role in both itch and pain

Neurons in the superficial dorsal horn that express the gastrin-releasing peptide receptor (GRPR) are strongly implicated in spinal itch pathways. However, a recent study reported that many of these correspond to vertical cells, a population of interneurons that are thought to transmit nociceptive information. In this study, we have used a GRPRCreERT2 mouse line to identify and target cells that possess Grpr mRNA.

Single nucleus transcriptomic analysis of rat nucleus accumbens reveals cell type-specific patterns of gene expression associated with volitional morphine intake

Opioid exposure is known to cause transcriptomic changes in the nucleus accumbens (NAc). However, no studies to date have investigated cell type-specific transcriptomic changes associated with volitional opioid taking. Here, we use single nucleus RNA sequencing (snRNAseq) to comprehensively characterize cell type-specific alterations of the NAc transcriptome in rats self-administering morphine. One cohort of male Brown Norway rats was injected with acute morphine (10 mg/kg, i.p.) or saline.

Defining the pig microglial transcriptome reveals its core signature, regional heterogeneity, and similarity with human and rodent microglia

Microglia play key roles in brain homeostasis as well as responses to neurodegeneration and neuroinflammatory processes caused by physical disease and psychosocial stress. The pig is a physiologically relevant model species for studying human neurological disorders, many of which are associated with microglial dysfunction. Furthermore, pigs are an important agricultural species, and there is a need to understand how microglial function affects their welfare.

Elevated prefrontal dopamine interferes with the stress-buffering properties of behavioral control in female rats

Stress-linked disorders are more prevalent in women than in men and differ in their clinical presentation. Thus, investigating sex differences in factors that promote susceptibility or resilience to stress outcomes, and the circuit elements that mediate their effects, is important. In male rats, instrumental control over stressors engages a corticostriatal system involving the prelimbic cortex (PL) and dorsomedial striatum (DMS) that prevent many of the sequelae of stress exposure.

Unique brain endothelial profiles activated by social stress promote cell adhesion, prostaglandin E2 signaling, hypothalamic-pituitary-adrenal axis modulation, and anxiety

Chronic stress may precipitate psychiatric disorders including anxiety. We reported that Repeated Social Defeat (RSD) in mice increased accumulation of inflammatory monocytes within the brain vasculature, which corresponded with increased interleukin (IL)-1 Receptor 1-mediated activation of endothelia, and augmented anxiety-like behavior. One unknown, however, is the role of immune-activated endothelia in regulating the physiological and behavioral responses to social stress.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com