Publications

The Bank Vole (Clethrionomys glareolus)-Small Animal Model for Hepacivirus Infection

Many people worldwide suffer from hepatitis C virus (HCV) infection, which is frequently persistent. The lack of efficient vaccines against HCV and the unavailability of or limited compliance with existing antiviral therapies is problematic for health care systems worldwide. Improved small animal models would support further hepacivirus research, including development of vaccines and novel antivirals. The recent discovery of several mammalian hepaciviruses may facilitate such research.

Decreased Fetal Movements: A Sign of Placental SARS-CoV-2 Infection with Perinatal Brain Injury

Neonatal COVID-19 is rare and mainly results from postnatal transmission. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), however, can infect the placenta and compromise its function. We present two cases of decreased fetal movements and abnormal fetal heart rhythm 5 days after mild maternal COVID-19, requiring emergency caesarean section at 29 + 3 and 32 + 1 weeks of gestation, and leading to brain injury.

Antiviral Activities of Carbazole Derivatives against Porcine Epidemic Diarrhea Virus In Vitro

Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, causes neonatal pig acute gastrointestinal infection with a characterization of severe diarrhea, vomiting, high morbidity, and high mortality, resulting in tremendous damages to the swine industry. Neither specific antiviral drugs nor effective vaccines are available, posing a high priority to screen antiviral drugs. The aim of this study is to investigate anti-PEDV effects of carbazole alkaloid derivatives.

Intrauterine Fetal Demise After Uncomplicated COVID-19: What Can We Learn from the Case?

SARS-CoV-2 infection in pregnant women can lead to placental damage and transplacental infection transfer, and intrauterine fetal demise is an unpredictable event.A 32-year-old patient in her 38th week of pregnancy reported loss of fetal movements. She overcame mild COVID-19 with positive PCR test 22 days before. A histology of the placenta showed deposition of intervillous fibrinoid, lympho-histiocytic infiltration, scant neutrophils, clumping of villi, and extant infarctions.

Baiting out a full length sequence from unmapped RNA-seq data

As a powerful tool, RNA-Seq has been widely used in various studies. Usually, unmapped RNA-seq reads have been considered as useless and been trashed or ignored.We develop a strategy to mining the full length sequence by unmapped reads combining with specific reverse transcription primers design and high throughput sequencing. In this study, we salvage 36 unmapped reads from standard RNA-Seq data and randomly select one 149 bp read as a model. Specific reverse transcription primers are designed to amplify its both ends, followed by next generation sequencing.

Molecular mechanisms in IL-1β-mediated decorin production by decidual cells

Decorin, a small leucine-rich proteoglycan produced by decidual cells restrains trophoblast differentiation, migration and invasiveness of extra-villous trophoblast cells. Decidual overproduction of decorin is associated with preeclampsia, and elevated decorin levels in maternal plasma are a predictive biomarker of preeclampsia. Furthermore, decorin plays an autocrine role in maturation of human endometrial stromal cells into decidual cells. Thus, a balanced decorin production by the decidua is critical for healthy pregnancy.

An Enriched Environment Reduces Chronic Stress-Induced Visceral Pain Through Modulating Microglial Activity in the Central Nucleus of the Amygdala

Cognitive behavioral therapy (CBT) improves the quality of life for patients with brain-gut disorders, however, the underlying mechanisms of CBT remain to be explored. Previously we showed that environmental enrichment (EE), an experimental paradigm that mirrors positive behavioral intervention, ameliorates chronic stress-induced visceral hypersensitivity in a rodent model via mechanisms involving altered activity in the central nucleus of amygdala (CeA).

Advances in our understanding of nematode ion channels as potential anthelmintic targets

Ion channels are specialized multimeric proteins that underlie cell excitability. These channels integrate with a variety of neuromuscular and biological functions. In nematodes, the physiological behaviors including locomotion, navigation, feeding and reproduction, are regulated by these protein entities. Majority of the antinematodal chemotherapeutics target the ion channels to disrupt essential biological functions. Here, we have summarized current advances in our understanding of nematode ion channel pharmacology.

Arcuate Angiotensin II increases arterial pressure via coordinated increases in sympathetic nerve activity and vasopressin secretion

The arcuate nucleus (ArcN) is an integrative hub for the regulation of energy balance, reproduction, and arterial pressure (AP), all of which are influenced by Angiotensin II (AngII); however, the cellular mechanisms and downstream neurocircuitry are unclear. Here we show that ArcN AngII increases AP in female rats via two phases, both of which are mediated via activation of AngII type 1 receptors (AT1aR): initial vasopressin-induced vasoconstriction, followed by slowly developing increases in sympathetic nerve activity (SNA) and heart rate (HR).

Crucial Role of Central Nervous System as a Viral Anatomical Compartment for HIV-1 Infection

The chronic infection established by the human immunodeficiency virus 1 (HIV-1) produces serious CD4+ T cell immunodeficiency despite the decrease in HIV-1 ribonucleic acid (RNA) levels and the raised life expectancy of people living with HIV-1 (PLWH) through treatment with combined antiretroviral therapies (cART). HIV-1 enters the central nervous system (CNS), where perivascular macrophages and microglia are infected. Serious neurodegenerative symptoms related to HIV-associated neurocognitive disorders (HAND) are produced by infection of the CNS.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com