Stem Cells

Single-Cell Transcriptomics Reveals that Differentiation and Spatial Signatures Shape Epidermal and Hair Follicle Heterogeneity.

The murine epidermis with its hair follicles represents an invaluable model system for tissue regeneration and stem cell research. Here we used single-cell RNA-sequencing to reveal how cellular heterogeneity of murine telogen epidermis is tuned at the transcriptional level. Unbiased clustering of 1,422 single-cell transcriptomes revealed 25 distinct populations of interfollicular and follicular epidermal cells. Our data allowed the reconstruction of gene expression programs during epidermal differentiation and along the proximal-distal axis of the hair follicle at unprecedented resolution.

Distribution of Lgr5-positive cancer cells in intramucosal gastric signet-ring cell carcinoma.

Leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) is a putative intestinal stem cell marker that is also expressed in various tumors. To analyze its pathological characteristics in mucosal gastric signet-ring cell carcinoma (SRCC), we investigated Lgr5 expression in 35 intramucosal gastric SRCC patients using RNAscope, a newly developed RNA in situ hybridization technique. Lgr5 expression in individual tumor cells was scored semi-quantitatively from 0 to 400.

Proneurogenic Ligands Defined by Modeling Developing Cortex Growth Factor Communication Networks.

The neural stem cell decision to self-renew or differentiate is tightly regulated by its microenvironment. Here, we have asked about this microenvironment, focusing on growth factors in the embryonic cortex at a time when it is largely comprised of neural precursor cells (NPCs) and newborn neurons. We show that cortical NPCs secrete factors that promote their maintenance, while cortical neurons secrete factors that promote differentiation.

Deletion of Polycomb Repressive Complex 2 From Mouse Intestine Causes Loss of Stem Cells.

Abstract

BACKGROUND & AIMS:

The polycomb repressive complex 2 (PRC2) regulates differentiation by contributing to repression of gene expression and thereby stabilizing the fate of stem cells and their progeny. PRC2 helps to maintain adult stem cell populations, but little is known about its functions in intestinal stem cells. We studied phenotypes of mice with intestine-specific deletion of the PRC2 proteins embryonic ectoderm development (EED) (a subunit required for PRC2 function) and enhancer of zeste homolog 2 (EZH2) (a histone methyltransferase).

METHODS:

Proximity-Based Differential Single-Cell Analysis of the Niche to Identify Stem/Progenitor Cell Regulators

Physiological stem cell function is regulated by secreted factors produced by niche cells. In this study, we describe an unbiased approach based on the differential single-cell gene expression analysis of mesenchymal osteolineage cells close to, and further removed from, hematopoieticstem/progenitor cells (HSPCs) to identify candidate niche factors. Mesenchymal cells displayed distinct molecular profiles based on their relative location.

Dedifferentiated Schwann Cell Precursors Secreting Paracrine Factors Are Required for Regeneration of the Mammalian Digit Tip.

Adult mammals have lost multi-tissue regenerative capacity, except for the distal digit, which is able to regenerate via mechanisms that remain largely unknown. Here, we show that, after adult mouse distal digit removal, nerve-associated Schwann cell precursors (SCPs) dedifferentiate and secrete growth factors that promote expansion of the blastema and digit regeneration. When SCPs were dysregulated or ablated, mesenchymal precursor proliferation in the blastema was decreased and nail and bone regeneration were impaired. Transplantation of exogenous SCPs rescued these regeneration defects.

Mule Regulates the Intestinal Stem Cell Niche via the Wnt Pathway and Targets EphB3 for Proteasomal and Lysosomal Degradation.

The E3 ubiquitin ligase Mule is often overexpressed in human colorectal cancers, but its role in gut tumorigenesis is unknown. Here, we show in vivo that Mule controls murine intestinal stem and progenitor cell proliferation by modulating Wnt signaling via c-Myc. Mule also regulates protein levels of the receptor tyrosine kinase EphB3 by targeting it for proteasomal and lysosomal degradation. In the intestine, EphB/ephrinB interactions position cells along the crypt-villus axis and compartmentalize incipient colorectal tumors.

LGR4 and LGR5 Function Redundantly During Human Endoderm Differentiation

Background & Aims

The Lgr family of transmembrane proteins (Lgr4, 5, 6) act as functional receptors for R-spondin proteins (Rspo 1, 2, 3, 4), and potentiate Wnt signaling in different contexts. Lgr5 is arguably the best characterized of the Lgr family members in a number of adult and embryonic of contexts in mice. However, the function ofLGR family members in early embryonic development is unclear, and has not been explored during human development or tissue differentiation in detail.

Methods

Essential Roles of Cyclin Y-Like 1 and Cyclin Y in Dividing Wnt-Responsive Mammary Stem/Progenitor Cells

Cyclin Y family can enhance Wnt/β-catenin signaling in mitosis. Their physiological roles in mammalian development are yet unknown. Here we show that Cyclin Y-like 1 (Ccnyl1) and Cyclin Y (Ccny) have overlapping function and are crucial for mouse embryonic development and mammary stem/progenitor cell functions. Double knockout of Ccnys results in embryonic lethality at E16.5. In pubertal development, mammary terminal end buds robustly express Ccnyl1.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com