Stem Cells

Differentiation reveals latent features of aging and an energy barrier in murine myogenesis

Skeletal muscle experiences a decline in lean mass and regenerative potential with age, in part due to intrinsic changes in progenitor cells. However, it remains unclear how age-related changes in progenitors manifest across a differentiation trajectory. Here, we perform single-cell RNA sequencing (RNA-seq) on muscle mononuclear cells from young and aged mice and profile muscle stem cells (MuSCs) and fibro-adipose progenitors (FAPs) after differentiation.

Identification of CXCL12-abundant reticular cells in human adult bone marrow

A population of mesenchymal stem cells, termed CXC chemokine ligand (CXCL)12-abundant reticular (CAR) cells or leptin receptor-expressing cells, are the major cellular component of niches for haematopoietic stem cells (HSCs) in murine bone marrow. CAR cells are characterized by several salient features, including much higher expression of CXCL12, stem cell factor (SCF), forkhead box C1 (FOXC1) and early B-cell factor 3 (EBF3), which are essential for HSC maintenance, than other cells. However, the human counterpart of CAR cells has not been fully described.

Odontoblast death drives cell-rich zone-derived dental tissue regeneration

Severe dental tissue damage induces odontoblast death, after which dental pulp stem and progenitor cells (DPSCs) differentiate into odontoblast-like cells, contributing to reparative dentin. However, the damage-induced mechanism that triggers this regeneration process is still not clear. We aimed to understand the effect of odontoblast death without hard tissue damage on dental regeneration.

Microbial exposure during early human development primes fetal immune cells

The human fetal immune system begins to develop early during gestation; however, factors responsible for fetal immune-priming remain elusive. We explored potential exposure to microbial agents in utero and their contribution toward activation of memory T cells in fetal tissues. We profiled microbes across fetal organs using 16S rRNA gene sequencing and detected low but consistent microbial signal in fetal gut, skin, placenta, and lungs in the 2nd trimester of gestation.

Apc-mutant cells act as supercompetitors in intestinal tumour initiation

A delicate equilibrium of WNT agonists and antagonists in the intestinal stem cell (ISC) niche is critical to maintaining the ISC compartment, as it accommodates the rapid renewal of the gut lining. Disruption of this balance by mutations in the tumour suppressor gene APC, which are found in approximately 80% of all human colon cancers, leads to unrestrained activation of the WNT pathway1,2. It has previously been established that Apc-mutant cells have a competitive advantage over wild-type ISCs3.

Tracing the origin of hair follicle stem cells

Tissue stem cells are generated from a population of embryonic progenitors through organ-specific morphogenetic events1,2. Although tissue stem cells are central to organ homeostasis and regeneration, it remains unclear how they are induced during development, mainly because of the lack of markers that exclusively label prospective stem cells. Here we combine marker-independent long-term 3D live imaging and single-cell transcriptomics to capture a dynamic lineage progression and transcriptome changes in the entire epithelium of the mouse hair follicle as it develops.

Nucleocytoplasmic transport of the RNA-binding protein CELF2 regulates neural stem cell fates

The development of the cerebral cortex requires balanced expansion and differentiation of neural stem/progenitor cells (NPCs), which rely on precise regulation of gene expression. Because NPCs often exhibit transcriptional priming of cell-fate-determination genes, the ultimate output of these genes for fate decisions must be carefully controlled in a timely fashion at the post-transcriptional level, but how that is achieved is poorly understood.

An MST4-pβ-CateninThr40 Signaling Axis Controls Intestinal Stem Cell and Tumorigenesis

Elevated Wnt/β-catenin signaling has been commonly associated with tumorigenesis especially colorectal cancer (CRC). Here, an MST4-pβ-cateninThr40 signaling axis essential for intestinal stem cell (ISC) homeostasis and CRC development is uncovered. In response to Wnt3a stimulation, the kinase MST4 directly phosphorylates β-catenin at Thr40 to block its Ser33 phosphorylation by GSK3β. Thus, MST4 mediates an active process that prevents β-catenin from binding to and being degraded by β-TrCP, leading to accumulation and full activation of β-catenin.

PLCγ2 regulates TREM2 signalling and integrin-mediated adhesion and migration of human iPSC-derived macrophages

Human genetic studies have linked rare coding variants in microglial genes, such as TREM2, and more recently PLCG2 to Alzheimer's disease (AD) pathology. The P522R variant in PLCG2 has been shown to confer protection for AD and to result in a subtle increase in enzymatic activity. PLCγ2 is a key component of intracellular signal transduction networks and induces Ca2+ signals downstream of many myeloid cell surface receptors, including TREM2.

Defining mammary basal cell transcriptional states using single-cell RNA-sequencing

Breast cancer is a heterogenous disease that can be classified into multiple subtypes including the most aggressive basal-like and triple-negative subtypes. Understanding the heterogeneity within the normal mammary basal epithelial cells holds the key to inform us about basal-like cancer cell differentiation dynamics as well as potential cells of origin.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com