Stem Cells

Hox gene expression determines cell fate of adult periosteal stem/progenitor cells

Hox genes are evolutionarily conserved transcription factors that during embryonic development function as master regulators of positional identity. In postnatal life, the function of Hox proteins is less clear: Hox genes are expressed during tissue repair, but in this context their function(s) are largely unknown. Here we show that Hox genes are expressed in periosteal stem/progenitor cells in a distribution similar to that during embryonic development.

RAL GTPases Drive Intestinal Stem Cell Function and Regeneration through Internalization of WNT Signalosomes.

Ral GTPases are RAS effector molecules and by implication a potential therapeutic target for RAS mutant cancer. However, very little is known about their roles in stem cells and tissue homeostasis. Using Drosophila, we identified expression of RalA in intestinal stem cells (ISCs) and progenitor cells of the fly midgut. RalA was required within ISCs for efficient regeneration downstream of Wnt signaling.

Znhit1 controls intestinal stem cell maintenance by regulating H2A.Z incorporation.

Lgr5+ stem cells are crucial to gut epithelium homeostasis; however, how these cells are maintained is not fully understood. Zinc finger HIT-type containing 1 (Znhit1) is an evolutionarily conserved subunit of the SRCAP chromosome remodeling complex. Currently, the function of Znhit1 in vivo and its working mechanism in the SRCAP complex are unknown.

SH3BP4 Regulates Intestinal Stem Cells and Tumorigenesis by Modulating β-Catenin Nuclear Localization.

Wnt signals at the base of mammalian crypts play a pivotal role in intestinal stem cell (ISC) homeostasis, whereas aberrant Wnt activation causes colon cancer.

KIAA1199 is a secreted molecule that enhances osteoblastic stem cell migration and recruitment.

Factors mediating mobilization of osteoblastic stem and progenitor cells from their bone marrow niche to be recruited to bone formation sites during bone remodeling are poorly known.

Autocrine regulation of mesenchymal progenitor cell fates orchestrates tooth eruption.

Formation of functional skeletal tissues requires highly organized steps of mesenchymal progenitor cell differentiation. The dental follicle (DF) surrounding the developing tooth harbors mesenchymal progenitor cells for various differentiated cells constituting the tooth root–bone interface and coordinates tooth eruption in a manner dependent on signaling by parathyroid hormone-related peptide (PTHrP) and the PTH/PTHrP receptor (PPR). However, the identity of mesenchymal progenitor cells in the DF and how they are regulated by PTHrP-PPR signaling remain unknown.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com