Neuroscience

Connecting nutritional deprivation and pubertal inhibition via GRK2-mediated repression of kisspeptin actions in GnRH neurons

Perturbations in the timing of puberty, with potential adverse consequences in later health, are increasingly common. The underlying neurohormonal mechanisms are unfolded, but nutritional alterations are key contributors. Efforts to unveil the basis of normal puberty and its metabolic control have focused on mechanisms controlling expression of Kiss1, the gene encoding the puberty-activating neuropeptide, kisspeptin. However, other regulatory phenomena remain ill-defined.

The influence of spontaneous and visual activity on the development of direction selectivity maps in mouse retina

In mice, retinal direction selectivity is organized in a map that aligns to the body and gravitational axes of optic flow, and little is known about how this map develops. We find direction selectivity maps are largely present at eye opening and develop normally in the absence of visual experience. Remarkably, in mice lacking the beta2 subunit of neuronal nicotinic acetylcholine receptors (β2-nAChR-KO), which exhibit drastically reduced cholinergic retinal waves in the first postnatal week, selectivity to horizontal motion is absent while selectivity to vertical motion remains.

Subcellular and regional localization of mRNA translation in midbrain dopamine neurons

Midbrain dopaminergic (mDA) neurons exhibit extensive dendritic and axonal arborizations, but local protein synthesis is not characterized in these neurons. Here, we investigate messenger RNA (mRNA) localization and translation in mDA neuronal axons and dendrites, both of which release dopamine (DA). Using highly sensitive ribosome-bound RNA sequencing and imaging approaches, we find no evidence for mRNA translation in mDA axons.

LRRTM3 regulates activity-dependent synchronization of synapse properties in topographically connected hippocampal neural circuits

Synaptic cell-adhesion molecules (CAMs) organize the architecture and properties of neural circuits. However, whether synaptic CAMs are involved in activity-dependent remodeling of specific neural circuits is incompletely understood. Leucine-rich repeat transmembrane protein 3 (LRRTM3) is required for the excitatory synapse development of hippocampal dentate gyrus (DG) granule neurons.

Monocytes promote acute neuroinflammation and become pathological microglia in neonatal hypoxic-ischemic brain injury

Rationale: Monocytes belong to the mononuclear phagocyte system and are immune responders to tissue injury and infection. There were also reports of monocytes transforming to microglia-like cells. Here we explore the roles of monocytes in microglia ontogeny and the pathogenesis of neonatal cerebral hypoxic-ischemic (HI) brain injury in mice.

Orexin 1 Receptor Antagonism in the Basolateral Amygdala Shifts the Balance from Pro- to Anti-stress Signaling and Behavior

BACKGROUND Stress produces differential behavioral responses through select molecular modifications to specific neurocircuitry elements. The orexin system targets key components of this neurocircuitry in the basolateral amygdala (BLA). METHODS We assessed the contribution of intra-BLA Orexin 1 receptors (Orx1R) in the expression of stress-induced phenotypes of mice.

Neuronal subtype-specific growth cone and soma purification from mammalian CNS via fractionation and fluorescent sorting for subcellular analyses and spatial mapping of local transcriptomes and proteomes

During neuronal development, growth cones (GCs) of projection neurons navigate complex extracellular environments to reach distant targets, thereby generating extraordinarily complex circuitry. These dynamic structures located at the tips of axonal projections respond to substrate-bound as well as diffusible guidance cues in a neuronal subtype- and stage-specific manner to construct highly specific and functional circuitry.

Nav1.7 is required for normal C-low threshold mechanoreceptor function in humans and mice

Patients with bi-allelic loss of function mutations in the voltage-gated sodium channel Nav1.7 present with congenital insensitivity to pain (CIP), whilst low threshold mechanosensation is reportedly normal. Using psychophysics (n = 6 CIP participants and n = 86 healthy controls) and facial EMG (n = 3 CIP participants and n = 8 healthy controls) we have found that these patients also have abnormalities in the encoding of affective touch which is mediated by the specialised afferents; C-low threshold mechanoreceptors (C-LTMRs).

APOE4 derived from astrocytes leads to blood-brain barrier impairment

Apolipoprotein E (ApoE) is a multifaceted secreted molecule synthesized in the CNS by astrocytes and microglia, and in the periphery largely by the liver. ApoE has been shown to impact the integrity of the blood brain barrier, and, in humans, the APOE4 allele of the gene is reported to lead to a leaky blood brain barrier. We used allele specific knock-in mice expressing each of the common (human) ApoE alleles, and longitudinal multiphoton intravital microscopy, to directly monitor the impact of various ApoE isoforms on blood brain barrier integrity.

AAV9/MFSD8 gene therapy is effective in preclinical models of neuronal ceroid lipofuscinosis type 7 disease

Neuronal ceroid lipofuscinosis type 7 (CLN7) disease is a lysosomal storage disease caused by mutations in the facilitator superfamily domain containing 8 (MFSD8) gene, which encodes a membrane-bound lysosomal protein MFSD8. To test the effectiveness and safety of adeno-associated viral (AAV) gene therapy, an in vitro study demonstrated that AAV2/MFSD8 dose-dependently rescued lysosomal function in fibroblasts from a CLN7 patient.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com