Neuroscience

Validation of terminal Schwann cell gene marker expression by fluorescent in situ hybridization using RNAscope

Recent RNA-seq studies have generated a new crop of putative gene markers for terminal Schwann cells (tSCs), non-myelinating glia that cap axon terminals at the vertebrate neuromuscular junction (NMJ). While compelling, these studies did not validate the expression of the novel markers using in situ hybridization techniques. Here, we use RNAscope technology to study the expression of top candidates from recent tSC and non-myelinating Schwann cell marker RNA-seq studies.

Time to drink: Activating lateral hypothalamic area neurotensin neurons promotes intake of fluid over food in a time-dependent manner

The lateral hypothalamic area (LHA) is essential for ingestive behavior but has primarily been studied in modulating feeding, with comparatively scant attention on drinking. This is partly because most LHA neurons simultaneously promote feeding and drinking, suggesting that ingestive behaviors track together. A notable exception are LHA neurons expressing neurotensin (LHANts neurons): activating these neurons promotes water intake but modestly restrains feeding.

Reducing local synthesis of estrogen in the tubular striatum promotes attraction to same-sex odors in female mice

Brain-derived 17β-estradiol (E2) confers rapid effects on neural activity. The tubular striatum (TuS, also called the olfactory tubercle) is both capable of local E2 synthesis due to its abundant expression of aromatase and is a critical locus for odor-guided motivated behavior and odor hedonics. TuS neurons also contain mRNA for estrogen receptors α, β, and the G protein-coupled estrogen receptor.

Stress-induced antinociception to noxious heat requires α1A-adrenaline receptors of spinal inhibitory neurons in mice

It is well known that acute exposure to physical stress produces a transient antinociceptive effect (called stress-induced analgesia [SIA]). One proposed mechanism for SIA involves noradrenaline (NA) in the central nervous system. NA has been reported to activate inhibitory neurons in the spinal dorsal horn (SDH), but its in vivo role in SIA remains unknown.

A Shared Transcriptional Identity for Forebrain and Dentate Gyrus Neural Stem Cells from Embryogenesis to Adulthood

Adult neural stem cells (NSCs) reside in two distinct niches in the mammalian brain, the ventricular-subventricular zone (V-SVZ) of the forebrain lateral ventricles and the subgranular zone (SGZ) of the hippocampal dentate gyrus. They are thought to be molecularly distinct since V-SVZ NSCs produce inhibitory olfactory bulb (OB) interneurons and SGZ NSCs excitatory dentate granule neurons. Here, we have asked whether this is so by directly comparing V-SVZ and SGZ NSCs from embryogenesis to adulthood using single-cell transcriptional data.

Fibroblast Growth Factor 21 Facilitates the Homeostatic Control of Feeding Behavior

Fibroblast growth factor 21 (FGF21) is a stress hormone that is released from the liver in response to nutritional and metabolic challenges. In addition to its well-described effects on systemic metabolism, a growing body of literature now supports the notion that FGF21 also acts via the central nervous system to control feeding behavior. Here we review the current understanding of FGF21 as a hormone regulating feeding behavior in rodents, non-human primates, and humans. First, we examine the nutritional contexts that induce FGF21 secretion.

Regulation of adult neurogenesis by the endocannabinoid-producing enzyme diacylglycerol lipase alpha (DAGLa)

The endocannabinoid system modulates adult hippocampal neurogenesis by promoting the proliferation and survival of neural stem and progenitor cells (NSPCs). This is demonstrated by the disruption of adult neurogenesis under two experimental conditions: (1) NSPC-specific deletion of cannabinoid receptors and (2) constitutive deletion of the enzyme diacylglycerol lipase alpha (DAGLa) which produces the endocannabinoid 2-arachidonoylglycerol (2-AG). However, the specific cell types producing 2-AG relevant to neurogenesis remain unknown.

Impaired Light Adaptation of ON-Sustained Ganglion Cells in Early Diabetes Is Attributable to Diminished Response to Dopamine D4 Receptor Activation

Retinal neuronal signaling is disrupted early in diabetes, before the onset of the vascular pathologies associated with diabetic retinopathy. There is also growing evidence that retinal dopamine, a neuromodulator that mediates light adaptation, is reduced in early diabetes. Previously, we have shown that after 6 weeks of diabetes, light adaptation is impaired in ON-sustained (ON-s) ganglion cells in the mouse retina.

The co-chaperone FKBP51 modulates HPA axis activity and age-related maladaptation of the stress system in pituitary proopiomelanocortin cells

Glucocorticoid (GC)-mediated negative feedback of the hypothalamic-pituitary-adrenal (HPA) axis, the body's physiological stress response system, is tightly regulated and essential for appropriate termination of this hormonal cascade. Disturbed regulation and maladaptive response of this axis are fundamental components of multiple stress-induced psychiatric and metabolic diseases and aging.

SELENOT deficiency in the mouse brain impacts catecholaminergic neuron density: an immunohistochemical, in situ hybridization and 3D light-sheet imaging study

Selenoprotein T (SELENOT), a PACAP-regulated thioredoxin-like protein, plays a role in catecholamine secretion and protects dopaminergic neurons. However, the role of SELENOT in the establishment of the catecholaminergic (CA) neuronal system is not known yet.We analyzed by immunohistochemistry and RNAscope in situ hybridization the distribution of SELENOT and the expression of its mRNA, respectively.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com