Neuroscience

Macrophages Regulate Schwann Cell Maturation after Nerve Injury

Pro-regenerative macrophages are well known for their role in promoting tissue repair; however, their specific roles in promoting regeneration of the injured nerve are not well defined. Specifically, how macrophages interact with Schwann cells following injury during remyelination has been largely unexplored. We demonstrate that after injury, including in humans, macrophages function to clear debris and persist within the nerve microenvironment.

Nuclear Localization of Huntingtin mRNA Is Specific to Cells of Neuronal Origin.

Huntington's disease (HD) is a monogenic neurodegenerative disorder representing an ideal candidate for gene silencing with oligonucleotide 

Quantitative Analysis of Alternative Pre-mRNA Splicing in Mouse Brain Sections Using RNA In Situ Hybridization Assay

Alternative splicing (AS) occurs in more than 90% of human genes. The expression pattern of an alternatively spliced exon is often regulated in a cell type-specific fashion.

Synergistic transcriptional changes in AMPA and GABAA receptor genes support compensatory plasticity following unilateral hearing loss.

Debilitating perceptual disorders including tinnitus, hyperacusis, phantom limb pain and visual release hallucinations may reflect aberrant patterns of neural activity in central sensory pathways following a loss of peripheral sensory input.

Neurons under T Cell Attack Coordinate Phagocyte-Mediated Synaptic Stripping

Inflammatory disorders of the CNS are frequently accompanied by synaptic loss, which is thought to involve phagocytic microglia and complement components. However, the mechanisms accounting for aberrant synaptic connectivity in the context of CD8+ T cell-driven neuronal damage are poorly understood. Here, we profiled the neuronal translatome in a murine model of encephalitis caused by CD8+ T cells targeting antigenic neurons. Neuronal STAT1 signaling and downstream CCL2 expression were essential for apposition of phagocytes, ensuing synaptic loss and neurological disease.

Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq.

Gliomas with histone H3 lysine27-to-methionine mutations (H3K27M-glioma) arise primarily in the midline of the central nervous system of young children, suggesting a cooperation between genetics and cellular context in tumorigenesis. Although the genetics of H3K27M-glioma are well characterized, their cellular architecture remains uncharted.

Variation among intact tissue samples reveals the core transcriptional features of human CNS cell classes

It is widely assumed that cells must be physically isolated to study their molecular profiles. However, intact tissue samples naturally exhibit variation in cellular composition, which drives covariation of cell-class-specific molecular features. By analyzing transcriptional covariation in 7,221 intact CNS samples from 840 neurotypical individuals, representing billions of cells, we reveal the core transcriptional identities of major CNS cell classes in humans.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com