Neuroscience

Chronic linaclotide treatment reduces colitis-induced neuroplasticity and reverses persistent bladder dysfunction.

Irritable bowel syndrome (IBS) patients suffer from chronic abdominal pain and extraintestinal comorbidities, including overactive bladder (OAB) and interstitial cystitis/painful bladder syndrome (IC-PBS). Mechanistic understanding of the cause and time course of these comorbid symptoms is lacking, as are clinical treatments. Here, we report that colitis triggers hypersensitivity of colonic afferents, neuroplasticity of spinal cord circuits, and chronic abdominal pain, which persists after inflammation.

Astrocyte-Secreted Chordin-like 1 Drives Synapse Maturation and Limits Plasticity by Increasing Synaptic GluA2 AMPA Receptors.

In the developing brain, immature synapses contain calcium-permeable AMPA glutamate receptors (AMPARs) that are subsequently replaced with GluA2-containing calcium-impermeable AMPARs as synapses stabilize and mature. Here, we show that this essential switch in AMPARs and neuronal synapse maturation is regulated by astrocytes. Using biochemical fractionation of astrocyte-secreted proteins and mass spectrometry, we identified that astrocyte-secreted chordin-like 1 (Chrdl1) is necessary and sufficient to induce mature GluA2-containing synapses to form.

Comprehensive analysis of Long non-coding RNA expression in dorsal root ganglion reveals cell type specificity and dysregulation following nerve injury.

Dorsal root ganglion (DRG) neurons provide connectivity between peripheral tissues and spinal cord. Transcriptional plasticity within DRG sensory neurons after peripheral nerve injury contributes to nerve repair but also leads to maladaptive plasticity, including the development of neuropathic pain. This study presents tissue and neuron specific expression profiling of both known and novel Long Non-Coding RNAs (LncRNAs) in rodent DRG following nerve injury.

30 Years of Neuroendocrinology: technological advances pave the way for molecular discovery.

Since the 1950's (1) the systems level interactions between the hypothalamus, pituitary and end organs such as the adrenal, thyroid and gonads have been well known, however it is only over the last three decades that advances in molecular biology and information technology have provided a tremendous expansion of knowledge at the molecular level.

Distinct descending motor cortex pathways and their roles in movement.

Activity in the motor cortex predicts movements, seconds before they are initiated. This preparatory activity has been observed across cortical layers, including in descending pyramidal tract neurons in layer 5. A key question is how preparatory activity is maintained without causing movement, and is ultimately converted to a motor command to trigger appropriate movements. Here, using single-cell transcriptional profiling and axonal reconstructions, we identify two types of pyramidal tract neuron. Both types project to several targets in the basal ganglia and brainstem.

Prelimbic cortex is a common brain area activated during cue‐induced reinstatement of cocaine and heroin seeking in a polydrug self‐administration rat model

Many preclinical studies examined cue-induced relapse to heroin and cocaine seeking in animal models, but most of these studies examined only one drug at a time. In human addicts, however, polydrug use of cocaine and heroin is common. We used a polydrug self-administration relapse model in rats to determine similarities and differences in brain areas activated during cue-induced reinstatement of heroin and cocaine seeking.

Volitional social interaction prevents drug addiction in rat models

Addiction treatment has not been appreciably improved by neuroscientific research. One problem is that mechanistic studies using rodent models do not incorporate volitional social factors, which play a critical role in human addiction. Here, using rats, we introduce an operant model of choice between drugs and social interaction. Independent of sex, drug class, drug dose, training conditions, abstinence duration, social housing, or addiction score in Diagnostic & Statistical Manual IV-based and intermittent access models, operant social reward prevented drug self-administration.

The Role of Dendritic Brain-Derived Neurotrophic Factor Transcripts on Altered Inhibitory Circuitry in Depression

Abstract
Background
A parallel downregulation of brain-derived neurotrophic factor (BDNF) and somatostatin (SST), a marker of inhibitory γ-amino-butyric acid (GABA) interneurons which target pyramidal cell dendrites, has been reported in several brain areas of subjects with major depressive disorder (MDD), and rodent genetic studies suggests they are linked and both contribute to the illness. However, the mechanism by which they contribute to the pathophysiology of the illness has remained elusive.

Aldosterone-sensitive HSD2 neurons in mice.

Sodium deficiency elevates aldosterone, which in addition to epithelial tissues acts on the brain to promote dysphoric symptoms and salt intake. Aldosterone boosts the activity of neurons that express 11-beta-hydroxysteroid dehydrogenase type 2 (HSD2), a hallmark of aldosterone-sensitive cells. To better characterize these neurons, we combine immunolabeling and in situ hybridization with fate mapping and Cre-conditional axon tracing in mice.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com