lncRNA

Analysis of the androgen receptor–regulated lncRNA landscape identifies a role for ARLNC1 in prostate cancer progression

The androgen receptor (AR) plays a critical role in the development of the normal prostate as well as prostate cancer. Using an integrative transcriptomic analysis of prostate cancer cell lines and tissues, we identified ARLNC1 (AR-regulated long noncoding RNA 1) as an important long noncoding RNA that is strongly associated with AR signaling in prostate cancer progression. Not only was ARLNC1 induced by the AR protein, but ARLNC1 stabilized the AR transcript via RNA–RNA interaction.

7SL RNA in Vertebrate Red Blood Cells.

We report that 7SL, the RNA component of the signal recognition particle (SRP), is an abundant ncRNA in mature red blood cells (RBCs) of human, mouse, and the frog Xenopus. 7SL RNA in RBCs is not associated with the canonical proteins of the SRP. Instead, it co-immunoprecipitates from a lysate of RBCs with a number of membrane-binding proteins. Human and mouse RBCs also contain a previously undescribed 68 nt RNA, sRN7SL, derived from the "S domain" of 7SL RNA.

Long noncoding RNA miR503HG, a prognostic indicator, inhibits tumor metastasis by regulating the HNRNPA2B1/NF-κB pathway in hepatocellular carcinoma

Abstract

Long noncoding RNAs (lncRNAs) have been associated with hepatocellular carcinoma (HCC), but the underlying molecular mechanisms of their specific association with hepatocarcinogenesis have not been fully explored.

Long noncoding RNA OCC-1 suppresses cell growth through destabilizing HuR protein in colorectal cancer

Overexpressed in colon carcinoma-1 (OCC-1) is one of the earliest annotated long noncoding RNAs (lncRNAs) in colorectal cancer (CRC); however, its function remains largely unknown. Here, we revealed that OCC-1 plays a tumor suppressive role in CRC. OCC-1 knockdown by RNA interference promotes cell growth both in vitro and in vivo, which is largely due to its ability to inhibit G0 to G1 and G1 to S phase cell cycle transitions. In addition, overexpression of OCC-1 can suppress cell growth in OCC-1 knockdown cells.

Expression of long non-coding RNA HOXA11-AS is correlated with progression of laryngeal squamous cell carcinoma

Abstract: Long noncoding RNA HOXA11 antisense RNA (HOXA11-AS) is involved in tumorigenesis and development of some human cancers. However, the role of HOXA11-AS in human laryngeal squamous cell cancer (LSCC) is yet
unclear. In this study, we firstly investigated the expression of HOXA11-AS in LSCC. Microarray and qRT-PCR showed that the level of HOXA11-AS was significantly higher in LSCC than that in the corresponding adjacent non-neoplastic

Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long noncoding RNA.

Nuclear receptors regulate gene expression in response to environmental cues, but the molecular events governing the cell type specificity of nuclear receptors remain poorly understood.

Mitotically-associated lncRNA (MANCR) Affects Genomic Stability and Cell Division in Aggressive Breast Cancer

Aggressive breast cancer is difficult to treat as it is unresponsive to many hormone-based therapies; therefore, it is imperative to identify novel, targetable regulators of progression. Long non-coding RNAs (lncRNAs) are important regulators in breast cancer and have great potential as therapeutic targets; however, little is known about how the majority of lncRNAs function within breast cancer. This study, characterizes a novel lncRNA, MANCR (mitotically-associated long non-coding RNA; LINC00704), which is upregulated in breast cancer patient specimens and cells.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com