TBD

P.189 Using in situ hybridization to delineate collagen VI genes' expression patterns in skeletal muscles of wild-type and COL6-related dystrophies mice

Collagen VI (COLVI) is a critical myomatrix protein for skeletal muscle health and maintenance. There are 6 COL6 genes (COL6A1-COL6A6). Pathogenic variants in COL6A1, COL6A2, or COL6A3 cause COLVI-related dystrophies (COL6-RDs) with early-onset muscle weakness and loss of ambulation. Identifying novel therapeutic targets is critical for developing COL6-RDs therapies.

P.190 Congenital muscular dystrophy associated to conserved oligomeric Golgi complex subunit 1 homozygous mutation

Congenital disorders of glycosylation (CDG) are a group of clinically and genetically heterogeneous diseases caused by disorders of glycoproteins synthesis. Patients manifest a wide range of symptoms, phenotypes, and severity, usually with neurological compromise. The conserved oligomeric Golgi (COG) complex plays an important role in vesicular tethering in retrograde Golgi transport. Mutation in this complex is considered a multiple-pathway CDG. Only 6 cases of pathogenic variants of COG1 have been reported in the literature.

Diagnostic and therapeutic recommendations in adult dystonia: a joint document by the Italian Society of Neurology, the Italian Academy for the Study of Parkinson's Disease and Movement Disorders, and the Italian Network on Botulinum Toxin

The diagnostic framework and the therapeutic management of patients with adult dystonia can represent a challenge for clinical neurologists. The objective of the present paper is to delineate diagnostic and therapeutic recommendations for dystonia provided by a panel of Italian experts afferent to the Italian Society of Neurology, the Italian Academy for the Study of Parkinson's Disease and Movement Disorders, and the Italian Network on Botulinum Toxin. We first discuss the clinical approach and the instrumental assessment useful for diagnostic purpose.

449 Pathways balancing basal mucin and cystic fibrosis transmembrane conductance regulator-mediated fluid secretion in the human small airway

Background: Mucociliary clearance is heavily affected by mucus concentration, with its attendant biophysical properties. Mucus concentration is tightly regulated by luminal mucin secretion and mucus hydration. Although small (distal) airways (

450 Pro-inflammatory Orai1 activity is elevated in people with cystic fibrosis regardless of elexacaftor/tezacaftor/ivacaftor treatment

Background: Orai1 is a plasma membrane Ca2+ channel that is involved in store-operated calcium entry (SOCE). In pulmonary cells, SOCE regulates gene expression and stimulates cytokine, mucin, and protease secretion. Activation of Orai1/SOCE results in recruitment of neutrophils to the lungs. Orai1 activation is also upstream of transcription factors such as nuclear factor of activated T cells, which facilitate onset of inflammation. In cystic fibrosis (CF), the immune response is dysregulated, and the lung is chronically inflamed, but Orai1 expression in the CF lung is poorly understood.

451 Robust, efficient workflow to establish, culture, and functionally assess primary-isolated airway epithelial cells

Background: Air-liquid interface (ALI) and organoid culture are key techniques for differentiating human airway epithelial cells (HAECs). The efficiency and robustness of these assays often depends on the quality of primary-isolated cells, but primary cell isolation workflows, with which the user controls the choice of isolation method, cell culture medium, and culture format, may reduce reproducibility.

452 Synergistic mucociliary clearance by beta-adrenergic and cholinergic agonists involves epithelial sodium channel inhibition and bicarbonate secretion

Background: Mucociliary clearance (MCC) is a vital innate defense mechanism that is impaired in people with cystic fibrosis (CF) and animal CF models. Dysfunctional MCC contributes to airway inflammation and infection, which hasten lung function decline. Most people with CF benefit from highly effective CF transmembrane conductance regulator (CFTR) modulators, but some mutations are unresponsive to currently available modulators, and even people with CF who benefit from modulator therapy may be unable to clear chronic pulmonary infections.

AUTOPSY STUDY OF TESTICLES IN COVID-19: UPREGULATION OF IMMUNE-RELATED GENES AND DOWNREGULATION OF TESTIS-SPECIFIC GENES

Infection by SARS-CoV-2 may be associated with testicular dysfunction that could affect male fertility.Testicles of fatal COVID-19 cases were investigated to detect virus in tissue and to evaluate histopathological and transcriptomic changes.Three groups were compared: a. uninfected controls (subjects dying of trauma or sudden cardiac death; n = 10); b. subjects dying of COVID-19 (virus-negative in testes; n = 15); c. subjects dying of COVID-19 (virus-positive in testes; n = 9).

HnRNP K mislocalisation in neurons of the dentate nucleus is a novel neuropathological feature of neurodegenerative disease and ageing

Nuclear depletion and cytoplasmic mislocalisation of the RNA-binding protein heterogeneous ribonucleoprotein K (hnRNP K) within pyramidal neurons of the frontal cortex have been shown to be a common neuropathological feature in frontotemporal lobar degeneration (FTLD) and elderly control brain. Here, we describe a second neuronal subtype vulnerable to mislocalisation within the dentate nucleus of the cerebellum.

T028: Single-cell RNA sequencing reveals the interplay between circulating CD4 T cells, B cells and cancer-associated monocytes in classic Hodgkin lymphoma treated with PD-1 blockade

The most abundant circulating CD3- population in patients with cHL was a newly identified monocyte subset with increased expression of multiple immunosuppressive and tumorigenic cytokines and chemokines, PD-L1 and SIRPa. This newly identified monocytic population was virtually absent from the blood of healthy donors. RNAscope analysis of the intact tumor microenvironment localized these tumor-infiltrating monocytes/macrophages to the immediate proximity of HRS cells.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com