TBD

Anatomical Methods to Study the Suprachiasmatic Nucleus

The mammalian suprachiasmatic nucleus (SCN) functions as a master circadian pacemaker. In order to examine mechanisms by which it keeps time, entrains to periodic environmental signals (zeitgebers), and regulates subordinate oscillators elsewhere in the brain and in the periphery, a variety of molecular methods have been applied.

Cell-specific RNA purification to study translatomes of mouse central nervous system

Cell-specific RNA sequencing has revolutionized the study of cell biology. Here, we present a protocol to assess cell-specific translatomes of genetically targeted cell types. We focus on astrocytes and describe RNA purification using RiboTag tools. Unlike single-cell RNA sequencing, this approach allows high sequencing depth to detect low expression genes, and the exploration of RNAs translated in subcellular compartments. Furthermore, it avoids underestimation of transcripts from cells susceptible to cell isolation procedures. The protocol can be applied to a variety of cell types.

TGFβ signaling is required for sclerotome resegmentation during development of the spinal column in Gallus gallus

We previously showed the importance of TGFβ signaling in development of the mouse axial skeleton. Here, we provide the first direct evidence that TGFβ signaling is required for resegmentation of the sclerotome using chick embryos. Lipophilic fluorescent tracers, DiO and DiD, were microinjected into adjacent somites of embryos treated with or without TGFβRI inhibitors, SB431542, SB525334 or SD208, at developmental day E2.5 (HH16). Lineage tracing of labeled cells was observed over the course of 4 days until the completion of resegmentation at E6.5 (HH32).

Role of the Gβ5/R7‐RGS complex in the regulation of pain transmission in sensory ganglia

Neuropathic pain is a chronic disorder resulting from damage to the afferent nerve fibers or central pain pathways and is often a complication in pathological conditions such as diabetes, shingles, multiple sclerosis, and stroke. The opioid epidemic has elucidated the need for more efficacious treatments for neuropathic pain. In 2019 alone, nearly 1.6 million people were diagnosed with an opioid use disorder and 48,000 people died from a synthetic opioid overdose.

Repair of the Murine Tympanic Membrane Displays Hallmarks of Regeneration

RNA expression data from all timepoints of perforation were merged and analyzed, revealing 8 distinct major populations of cells and revealing time-dependent transcriptional shifts in each layer of the TM. From both cross-sectional and whole-mount views, the TM shows a rapid, proliferative response to injury by 18 hours post-injury, predominantly in the KCs. 3 days after perforation, there are large transcriptional shifts in the immune, mesenchymal, and mucosal populations.

Different Murine Models of Kidney Injury Reveal a Common Pattern of Dysregulation within the Polyamine System in Favour of its Catabolic Pathways

The polyamines putrescine, spermidine and spermine are organic polycations that regulate many cell functions including proliferation and differentiation. It is known that certain genes of the polyamine system are dysregulated after kidney ischemia reperfusion injury. Here we examined the hypothesis that different forms of acute and chronic kidney injury lead to similar changes in the expression patterns of the polyamine system. In different models of acute and chronic kidney injury expression of genes involved in polyamine homeostasis were analyzed by RT-qPCR and RNAScope.

MYB RNA In Situ Hybridization Is a Useful Diagnostic Tool to Distinguish Breast Adenoid Cystic Carcinoma From Other Triple-negative Breast Carcinomas

Breast adenoid cystic carcinoma (AdCC) has overlapping features with basal-like triple-negative breast carcinoma (TNBC), yet carries a more favorable prognosis, and accurate diagnosis is critical. Like salivary gland AdCC, breast AdCC demonstrates recurrent alterations in the MYB gene. Novel chromogenic RNA in situ hybridization (ISH) for MYB has emerged as sensitive and specific for salivary gland AdCC. Here, we evaluate MYB RNA ISH in invasive ductal carcinomas (IDCs) including basal-like TNBC, and in the histologic mimics ductal carcinoma in situ (DCIS) and collagenous spherulosis.

Pthlha and mechanical force control early patterning of growth zones in the zebrafish craniofacial skeleton

Secreted signals in patterning systems often induce repressive signals that shape their distributions in space and time. In developing growth plates (GPs) of endochondral long bones, Parathyroid hormone-like hormone (Pthlh) inhibits Indian hedgehog (Ihh) to form a negative-feedback loop that controls GP progression and bone size. Whether similar systems operate in other bones and how they arise during embryogenesis remain unclear.

EWSR1-ATF1 dependent 3D connectivity regulates oncogenic and differentiation programs in Clear Cell Sarcoma

Oncogenic fusion proteins generated by chromosomal translocations play major roles in cancer. Among them, fusions between EWSR1 and transcription factors generate oncogenes with powerful chromatin regulatory activities, capable of establishing complex gene expression programs in permissive precursor cells. Here we define the epigenetic and 3D connectivity landscape of Clear Cell Sarcoma, an aggressive cancer driven by the EWSR1-ATF1 fusion gene.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com