RNAscope

Single-cell transcriptomics of suprachiasmatic nuclei reveal a Prokineticin-driven circadian network

Circadian rhythms in mammals are governed by the hypothalamic suprachiasmatic nucleus (SCN), in which 20,000 clock cells are connected together into a powerful time-keeping network. In the absence of network-level cellular interactions, the SCN fails as a clock. The topology and specific roles of its distinct cell populations (nodes) that direct network functions are, however, not understood.

Does SARS-CoV-2 infect cardiomyocytes directly? Yes, it does

Introduction: COVID-19 (Coronavirus disease 2019) appeared in Wuhan, China, at the ending of 2019. The SARS-CoV-2 virus which causes the illness has spread all over the world and caused a pandemic. The first target of the virus is the respiratory tract; however, the COVID-19 may present different types of course. It is known that the SARS-CoV-2 affects multiple organs, including the heart. Cardiac manifestations of COVID-19 include myocarditis, myocardial infarction, heart failure, acute coronar... Morey syndrome, arrhythmia.

Expression of LGR5 in mammary myoepithelial cells and in triple-negative breast cancers

Lineage tracing in mice indicates that LGR5 is an adult stem cell marker in multiple organs, such as the intestine, stomach, hair follicles, ovary, and mammary glands. Despite many studies exploring the presence of LGR5 cells in human tissues, little is known about its expression profile in either human mammary tissue or pathological lesions. In this study we aim to investigate LGR5 expression in normal, benign, and malignant lesions of the human breast using RNA in situ hybridization.

Postnatal Sox6 regulates synaptic function of cortical parvalbumin-expressing neurons

Cortical parvalbumin (Pvalb)-expressing neurons provide robust inhibition to neighboring pyramidal neurons, crucial for the proper functioning of cortical networks. This class of inhibitory neurons undergoes extensive synaptic formation and maturation during the first weeks after birth and continue to dynamically maintain their synaptic output throughout adulthood.

Plexin-A1 expression in the inhibitory neurons of infralimbic cortex regulates the specificity of fear memory in male mice

Maintaining appropriate levels of fear memory specificity is crucial for individual's survival and mental health, whereas overgeneralized fear commonly occurs in neuropsychiatric disorders, including posttraumatic stress disorder and generalized anxiety disorder. However, the molecular mechanisms regulating fear memory specificity remain poorly understood. The medial prefrontal cortex (mPFC) is considered as a key brain region in fear memory regulation.

Mouse Papillomavirus L1 and L2 Are Dispensable for Viral Infection and Persistence at Both Cutaneous and Mucosal Tissues

Papillomavirus L1 and L2, the major and minor capsid proteins, play significant roles in viral assembly, entry, and propagation. In the current study, we investigate the impact of L1 and L2 on viral life cycle and tumor growth with a newly established mouse papillomavirus (MmuPV1) infection model. MmuPV1 L1 knockout, L2 knockout, and L1 plus L2 knockout mutant genomes (designated as L1ATGko-4m, L2ATGko, and L1-L2ATGko respectively) were generated. The mutants were examined for their ability to generate lesions in athymic nude mice.

The circadian clock gene, Bmal1, regulates intestinal stem cell signaling and represses tumor initiation

Circadian rhythms are daily physiological oscillations driven by the circadian clock: a 24-hour transcriptional timekeeper that regulates hormones, inflammation, and metabolism. Circadian rhythms are known to be important for health, but whether their loss contributes to colorectal cancer is not known.We tested the non-redundant clock gene, Bmal1, in intestinal homeostasis and tumorigenesis, using the Apcmin model of colorectal cancer.Bmal1 mutant, epithelium-conditional Bmal1 mutant, and photoperiod-disrupted mice bearing the Apcmin allele were assessed for tumorigenesis.

Δ133p53β isoform pro-invasive activity is regulated through an aggregation-dependent mechanism in cancer cells

The p53 isoform, Δ133p53β, is critical in promoting cancer. Here we report that Δ133p53β activity is regulated through an aggregation-dependent mechanism. Δ133p53β aggregates were observed in cancer cells and tumour biopsies. The Δ133p53β aggregation depends on association with interacting partners including p63 family members or the CCT chaperone complex. Depletion of the CCT complex promotes accumulation of Δ133p53β aggregates and loss of Δ133p53β dependent cancer cell invasion.

LncRNA PCBP1-AS1-mediated AR/AR-V7 deubiquitination enhances prostate cancer enzalutamide resistance

The refractory of castration-resistant prostate cancer (CRPC) is mainly reflected in drug resistance. The current research on the resistance mechanism of CRPC is still in its infancy. In this study, we revealed for the first time the key role of LncRNA PCBP1-AS1 in CRPC drug resistance. Through detailed in vivo and in vitro studies, we found that PCBP1-AS1 may enhance the deubiquitination of AR/AR-V7 by stabilizing the USP22-AR/AR-V7 complex, thereby preventing AR/AR-V7 from being degraded through the ubiquitin-proteasome pathway.

Introduction of synaptotagmin 7 promotes facilitation at the climbing fiber to Purkinje cell synapse

Synaptotagmin 7 (Syt7) is a high-affinity calcium sensor that is implicated in multiple aspects of synaptic transmission. Here, we study the influence of Syt7 on the climbing fiber (CF) to Purkinje cell (PC) synapse. We find that small facilitation and prominent calcium-dependent recovery from depression at this synapse do not rely on Syt7 and that Syt7 is not normally present in CFs. We expressed Syt7 in CFs to assess the consequences of introducing Syt7 to a synapse that normally lacks Syt7. Syt7 expression does not promote asynchronous release or accelerate recovery from depression.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com