RNAscope

Association of HPV42 with digital papillary adenocarcinoma and the use of in situ hybridization for its distinction from acral hidradenoma and diagnosis at non-acral sites

Digital papillary adenocarcinoma (DPAC) is a rare tumor of sweat gland origin that preferentially affects the digits and has the potential to metastasize. Its tumor diagnosis can be difficult. Well-differentiated variants of DPAC can be confused with a benign sweat gland tumor, in particular nodular hidradenoma. With the recent detection of HPV42 DNA in DPAC by next-generation sequence analysis, we reasoned that this association could be used for diagnostic purposes.

Single-Cell Imaging Shows That the Transcriptional State of the HIV-1 Provirus and Its Reactivation Potential Depend on the Integration Site

Current antiretroviral treatment fails to cure HIV-1 infection since latent provirus resides in long-lived cellular reservoirs, rebounding whenever therapy is discontinued. The molecular mechanisms underlying HIV-1 latency are complex where the possible link between integration and transcription is poorly understood. HIV-1 integration is targeted toward active chromatin by the direct interaction with a host protein, lens epithelium-derived growth factor (LEDGF/p75).

Preventing Cholesterol-Induced Perk (Protein Kinase RNA-Like Endoplasmic Reticulum Kinase) Signaling in Smooth Muscle Cells Blocks Atherosclerotic Plaque Formation

Vascular smooth muscle cells (SMCs) undergo complex phenotypic modulation with atherosclerotic plaque formation in hyperlipidemic mice, which is characterized by de-differentiation and heterogeneous increases in the expression of macrophage, fibroblast, osteogenic, and stem cell markers.

Neutrophil extracellular traps, local IL-8 expression, and cytotoxic T-lymphocyte response in the lungs of fatal COVID-19

Excessive inflammation is pathogenic in the pneumonitis associated with severe COVID-19. Neutrophils are among the most abundantly present leukocytes in the inflammatory infiltrates and may form neutrophil extracellular traps (NETs) under the local influence of cytokines.

Fibroblast Heterogeneity in Healthy and Wounded Skin

Fibroblasts are the main cell type in the dermis. They are responsible for the synthesis and deposition of structural proteins such as collagen and elastin, which are integrated into the extracellular matrix (ECM). Mouse and human studies using flow cytometry, cell culture, skin reconstitution, and lineage tracing experiments have shown the existence of different subpopulations of fibroblasts, including papillary fibroblasts, reticular fibroblasts, and fibroblasts comprising the dermal papilla at the base of the hair follicle.

A mitochondrial contribution to anti-inflammatory shear stress signaling in vascular endothelial cells

Atherosclerosis, the major cause of myocardial infarction and stroke, results from converging inflammatory, metabolic, and biomechanical factors. Arterial lesions form at sites of low and disturbed blood flow but are suppressed by high laminar shear stress (LSS) mainly via transcriptional induction of the anti-inflammatory transcription factor, Kruppel-like factor 2 (Klf2). We therefore performed a whole genome CRISPR-Cas9 screen to identify genes required for LSS induction of Klf2.

Investigation of cardiotoxicity by dipeptidyl-peptidase-4 inhibitors in a human cardiomyocyte cell line as well as in samples from chronic heart failure patients

Funding Acknowledgements Type of funding sources: Public grant(s) - EU funding. Main funding source(s): Horizon 2020 research and innovation programme, Ministry for Innovation and Technology Background Dipeptidyl-peptidase-4 (DPP4) inhibitors are relatively new therapeutic tools for type 2 diabetes. The SAVOR-TIMI-53 clinical trial has revealed an increased heart failure (HF)-associated hospitalization rate in saxagliptin treated patients.

Inhibition of novel lipoprotein(a) receptor major facilitator superfamily domain containing 5 (MFSD5) reduces development of aortic valve calcification

Funding Acknowledgements Type of funding sources: Other. Main funding source(s): Private grant from Kowa Pharmaceuticals to Brigham and Woman's Hospital Calcific aortic valve stenosis (CAVS) is the most prevent valvular heart disease in the western world increasing exponentially with age, with an 112% increase in CAVS deaths in the last three decades; however no therapeutic treatment is currently available.

Adoptive Cellular Therapy with Autologous Tumor-Infiltrating Lymphocytes and T-cell Receptor-Engineered T Cells Targeting Common p53 Neoantigens in Human Solid Tumors

Adoptive cellular therapy (ACT) targeting neoantigens can achieve durable clinical responses in patients with cancer. Most neoantigens arise from patient-specific mutations, requiring highly individualized treatments. To broaden the applicability of ACT targeting neoantigens, we focused on TP53 mutations commonly shared across different cancer types. We performed whole-exome sequencing on 163 patients with metastatic solid cancers, identified 78 who had TP53 missense mutations, and through immunologic screening, identified 21 unique T-cell reactivities.

Cell and chromatin transitions in intestinal stem cell regeneration

The progeny of intestinal stem cells (ISCs) dedifferentiate in response to ISC attrition. The precise cell sources, transitional states, and chromatin remodeling behind this activity remain unclear. In the skin, stem cell recovery after injury preserves an epigenetic memory of the damage response; whether similar memories arise and persist in regenerated ISCs is not known.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com