RNAscope

LncMIR181A1HG is a novel chromatin-bound epigenetic suppressor of early stage osteogenic lineage commitment

Bone formation requires osteogenic differentiation of multipotent mesenchymal stromal cells (MSCs) and lineage progression of committed osteoblast precursors. Osteogenic phenotype commitment is epigenetically controlled by genomic (chromatin) and non-genomic (non-coding RNA) mechanisms. Control of osteogenesis by long non-coding RNAs remains a largely unexplored molecular frontier. Here, we performed comprehensive transcriptome analysis at early stages of osteogenic cell fate determination in human MSCs, focusing on expression of lncRNAs.

LGR5 is a conserved marker of hair follicle stem cells in multiple species and is present early and throughout follicle morphogenesis

Hair follicle stem cells are key for driving growth and homeostasis of the hair follicle niche, have remarkable regenerative capacity throughout hair cycling, and display fate plasticity during cutaneous wound healing. Due to the need for a transgenic reporter, essentially all observations related to LGR5-expressing hair follicle stem cells have been generated using transgenic mice, which have significant differences in anatomy and physiology from the human.

Novel roles of tendon in the postnatal growth and expansion of TMJ condyle

The Temporomandibular joint (TMJ) is one of the most complex joints in the human body. TMJ is composed of the temporal bone, a disc and a movable mandibular condyle with abundant tendon attachments. Tendon has been thought to play the sole function of transmitting muscle forces to stabilize joints, yet it is largely unclear why tendon undergoes ectopic ossification in trauma or diseases, and whether it has any direct contribution to skeletal formation. This study aimed to investigate the full biological significance of tendon in TMJ growth.

Influenza A Virus Causes Shedding of the Alveolar Epithelial Glycocalyx through Activation of Sheddases

Objective The healthy alveolar epithelium is protected by a heparan sulfate rich, glycosaminoglycan layer called the epithelial glycocalyx. Our group found that the epithelial glycocalyx is shed in patients with acute respiratory distress syndrome (ARDS). In murine models of LPS- or bleomycin-induced acute lung injury, sheddases (membrane-bound enzymes that cleave extracellular potions of transmembrane proteins) are upregulated and associated with glycocalyx shedding and increased lung permeability. ARDS is commonly caused by viral infections including influenza A (IAV).

Localization of Orphan GPCRs within the Liver

In order to characterize these understudied receptors within the liver, we must first understand where they are localized and what activates them. Given the dearth of reliable antibodies, we began by examining expression using RNAscope, a powerful _in situ_ technique that specifically localizes mRNA sequences. GPR108, which has previously been linked to regulation of Toll-Like Receptor signaling, was found within hepatocytes.

Targeting HDAC6 in the Dorsal Root Ganglia Attenuates Peripheral Nerve Injury‐induced Hypersensitivity

Histone deacetylase 6 (HDAC6) is a Class IIb histone deacetylase, which is primarily localized to the cytoplasm and plays an important role in cell structure and dynamism, transcriptional repression, exocytosis and endocytocis. Preclinical evidence has suggested that HDAC6 inhibitors alleviate signs of chemotherapy-induced peripheral neuropathy (CIPN), such as mechanical allodynia. However, no group to our knowledge has investigated the mechanism of action of HDAC6 inhibitors in a severe nerve injury model, which has a different pathophysiology than milder models such as CIPN.

FOXI1 Promotes Expression of V‐ATPase and GPR116 in M‐1 Cells

G protein-coupled receptors (GPCRs) are a diverse family of integral membrane proteins that have significant roles in numerous physiological systems. We previously reported that GPR116 (ADGRF5), an adhesion-class GPCR, is a critical regulator of vacuolar-type H+-ATPase (V-ATPase) surface expression in A-type intercalated cells (AICs) in mouse kidney cortical collecting ducts. The V-ATPase is a multi-subunit proton pump that localizes to the plasma membrane in specialized acid-secreting epithelial cells.

Hypoxia Augments TRPM3‐mediated Calcium Influx in Vagal Sensory Neurons

Exposure to low systemic oxygen (hypoxia, Hx) elevates blood pressure, heart rate and respiration via reflex sensory and central nervous system activation. We have shown transient receptor potential (TRP) vanilloid channels contribute to afferent-evoked activation of the brainstem nucleus tractus solitarii (nTS) following chronic Hx. Short sustained Hx exposure (10% O2, 24hr) in rats also enhances nTS activity, although the mechanisms are not completely understood.

Role of locus coeruleus expressing angiotensin type 1 receptors (AT1R) neurons in fear learning and stress‐induced anxiety

The renin-angiotensin system (RAS) has been implicated in stress-related disorders, however the central mechanisms responsible for this remains unknown. The locus coeruleus (LC), a major noradrenergic nucleus of the brain, plays a critical role in modulating anxiety-like behaviors. The LC has also been previously shown to express angiotensinogen (AGT), the pre-cursor for angiotensin, as well as strong expression of angiotensin II receptors, but its role in stress-related disorders has not been examined.

Upregulation of Cell Division Cycle 20 Expression Alters the Morphology of Neuronal Dendritic Spines in the Nucleus Accumbens by Promoting FMRP Ubiquitination

The nucleus accumbens (NAc) is the key area of the reward circuit, but its heterogeneity has been poorly studied. Using single-cell RNA sequencing, we revealed a subcluster of GABAergic neurons characterized by cell division cycle 20 (Cdc20) mRNA expression in the NAc of adult rats. We studied the coexpression of Cdc20 and Gad1 mRNA in the NAc neurons of adult rats and assessed Cdc20 protein expression in the NAc during rat development.

Pages

X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com